为处理好变电站故障诊断问题中故障源和故障征兆间因果关系的不确定性,提出了基于故障群组合优化的故障诊断方法。依据变电站运行方式和保护配置建立保护配合的 Petri 网模型,用该模型的状态转移方程获取所有的故障群-征兆群对子,创建...为处理好变电站故障诊断问题中故障源和故障征兆间因果关系的不确定性,提出了基于故障群组合优化的故障诊断方法。依据变电站运行方式和保护配置建立保护配合的 Petri 网模型,用该模型的状态转移方程获取所有的故障群-征兆群对子,创建故障群组合作为已知故障征兆诊断解的适应度函数,并用遗传算法搜索出最优诊断解。实验证明:该方法不仅能有效地辨识出故障源,而且能提供保护装置拒动、断路器拒动、信号传输错误等信息,对现场人员迅速确认故障设备非常有利。展开更多
Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type...Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type and grey reference sequence structure, some typicalfault samples are divided into several sets of grey reference sequences. These sets are structuredas one grey reference sequence group. Secondly, according to a new calculation method of the greyrelational coefficient, the individual relational coefficient and grade are computed. Then accordingto the given calculation method for the group grey relation grade, the group grey relational gradeis computed and the group grey relational grade matrix is structured. Finally, according to therelational sequence, the insulation fault is identified for power transformers. The results of alarge quantity of instant analyses show that the proposed method has higher diagnosis accuracy andreliability than the three-ratio method and the traditional grey relational method. It has goodclassified diagnosis ability and reliability.展开更多
Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined compo...Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.展开更多
文摘为处理好变电站故障诊断问题中故障源和故障征兆间因果关系的不确定性,提出了基于故障群组合优化的故障诊断方法。依据变电站运行方式和保护配置建立保护配合的 Petri 网模型,用该模型的状态转移方程获取所有的故障群-征兆群对子,创建故障群组合作为已知故障征兆诊断解的适应度函数,并用遗传算法搜索出最优诊断解。实验证明:该方法不仅能有效地辨识出故障源,而且能提供保护装置拒动、断路器拒动、信号传输错误等信息,对现场人员迅速确认故障设备非常有利。
文摘Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type and grey reference sequence structure, some typicalfault samples are divided into several sets of grey reference sequences. These sets are structuredas one grey reference sequence group. Secondly, according to a new calculation method of the greyrelational coefficient, the individual relational coefficient and grade are computed. Then accordingto the given calculation method for the group grey relation grade, the group grey relational gradeis computed and the group grey relational grade matrix is structured. Finally, according to therelational sequence, the insulation fault is identified for power transformers. The results of alarge quantity of instant analyses show that the proposed method has higher diagnosis accuracy andreliability than the three-ratio method and the traditional grey relational method. It has goodclassified diagnosis ability and reliability.
基金Projects(City U 11201315,T32-101/15-R)supported by the Research Grants Council of the Hong Kong Special Administrative Region,China
文摘Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.