Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord...Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.展开更多
To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing b...To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing bed data into a two-dimensional map.Visualization of the SOM is used to cluster the ground testing bed data.The out map of the SOM is divided to several regions.Each region is represented for one fault mode.The fault mode of testing data is determined according to the region of their labels belonged to.The method is evaluated using the testing data of a liquid-propellant rocket engine ground testing bed with sixteen fault states.The results show that it is a reliable and effective method for fault diagnosis with good visualization property.展开更多
基金Supported by the National Basic Research Program of China (2013CB733600), the National Natural Science Foundation of China (21176073), the Doctoral Fund of Ministry of Education of China (20090074110005), the Program for New Century Excellent Talents in University (NCET-09-0346), Shu Guang Project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.
基金Sponsored by the National Natural Science Foundation of China(Grant No. NSFC-60572010)
文摘To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing bed data into a two-dimensional map.Visualization of the SOM is used to cluster the ground testing bed data.The out map of the SOM is divided to several regions.Each region is represented for one fault mode.The fault mode of testing data is determined according to the region of their labels belonged to.The method is evaluated using the testing data of a liquid-propellant rocket engine ground testing bed with sixteen fault states.The results show that it is a reliable and effective method for fault diagnosis with good visualization property.