期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
适用于电表终端故障识别训练的图像训练方法
1
作者
丁超
张秋雁
+2 位作者
王蓝苓
欧家祥
王铎润
《电工技术》
2020年第12期56-59,共4页
针对当前深度学习算法在电表故障识别训练领域中存在的不足,文章提出了一种改进的电表故障识别训练方法。对传统算法的识别训练过程进行了优化,重点关注缺陷样本的训练和图像采集质量的优化,并采用透视变换等技术手段丰富样本库、调整...
针对当前深度学习算法在电表故障识别训练领域中存在的不足,文章提出了一种改进的电表故障识别训练方法。对传统算法的识别训练过程进行了优化,重点关注缺陷样本的训练和图像采集质量的优化,并采用透视变换等技术手段丰富样本库、调整改善样本采集质量,提升了数据训练结果的可靠性。实例验证表明该方法具有良好适应性与高识别训练可靠度。
展开更多
关键词
电表终端
深度学习
样本不平衡
故障识别训练
图像
训练
下载PDF
职称材料
题名
适用于电表终端故障识别训练的图像训练方法
1
作者
丁超
张秋雁
王蓝苓
欧家祥
王铎润
机构
贵州电网有限责任公司电力科学研究院
贵州电网有限责任公司贵阳修文供电局
出处
《电工技术》
2020年第12期56-59,共4页
文摘
针对当前深度学习算法在电表故障识别训练领域中存在的不足,文章提出了一种改进的电表故障识别训练方法。对传统算法的识别训练过程进行了优化,重点关注缺陷样本的训练和图像采集质量的优化,并采用透视变换等技术手段丰富样本库、调整改善样本采集质量,提升了数据训练结果的可靠性。实例验证表明该方法具有良好适应性与高识别训练可靠度。
关键词
电表终端
深度学习
样本不平衡
故障识别训练
图像
训练
Keywords
smart meter terminal
deep learning
sample imbalance
fault identification
image training
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
适用于电表终端故障识别训练的图像训练方法
丁超
张秋雁
王蓝苓
欧家祥
王铎润
《电工技术》
2020
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部