期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
电控燃油车辆油耗过高的故障分析与诊断研究
1
作者 姜贺 《汽车维修技师》 2024年第20期12-13,共2页
汽车故障可分为功能性故障和性能性故障。油耗过高属于性能性故障,如不及时处理车辆损害会加大,提高车辆运行成本,造成大气污染。本文主要针对电控燃油车辆油耗过高的故障进行分析和诊断,运用合适的方法和工具进行部件技术状况检测,给... 汽车故障可分为功能性故障和性能性故障。油耗过高属于性能性故障,如不及时处理车辆损害会加大,提高车辆运行成本,造成大气污染。本文主要针对电控燃油车辆油耗过高的故障进行分析和诊断,运用合适的方法和工具进行部件技术状况检测,给出故障排除指导,帮助操作者能够迅速准确找到故障部位并排除故障。 展开更多
关键词 发动机 油耗过高 故障诊断检测 技术状况
下载PDF
电磁继电器故障检测系统设计与实现
2
作者 杜雯雯 《中国高新科技》 2024年第10期58-60,共3页
文章提出了一种使用C++编程语言开发电磁继电器故障检测系统的方案,该系统包括数据采集、数据挖掘和设备管理模块。采用了三层架构的设计,旨在提高系统的开发效率和可维护性。为了提升故障识别率,引入了K-means算法作为数据挖掘的核心... 文章提出了一种使用C++编程语言开发电磁继电器故障检测系统的方案,该系统包括数据采集、数据挖掘和设备管理模块。采用了三层架构的设计,旨在提高系统的开发效率和可维护性。为了提升故障识别率,引入了K-means算法作为数据挖掘的核心方法。在系统开发中,数据采集模块负责获取与电磁继电器运行状态相关的数据,如电流、电压和温度等。数据挖掘模块使用K-means算法对这些数据进行聚类分析,以识别潜在的故障模式和异常行为。设备管理模块则通过三层架构进行设计,包括数据存储、业务逻辑和用户界面层,以实现对传感器、模型部署等设备的有效管理。 展开更多
关键词 电磁继电器 故障诊断检测 K-MEANS算法
下载PDF
基于限制最小二乘估计的飞机舵面故障诊断方法 被引量:5
3
作者 苏浩秦 宋述杰 邓建华 《机械科学与技术》 CSCD 北大核心 2005年第9期1033-1035,共3页
飞机在空中飞行时,如果舵面出现故障,将会严重的影响飞机机动,重则坠毁,因此能够实时检测出故障,可以极大地提高飞机的生存性和机动性,基于限制最小二乘方法能够鲁棒的辨识出飞机舵面的故障情况,克服由于噪声和小激励带来辨识不准确的问... 飞机在空中飞行时,如果舵面出现故障,将会严重的影响飞机机动,重则坠毁,因此能够实时检测出故障,可以极大地提高飞机的生存性和机动性,基于限制最小二乘方法能够鲁棒的辨识出飞机舵面的故障情况,克服由于噪声和小激励带来辨识不准确的问题,是一种很好的飞机舵面故障检诊方法。 展开更多
关键词 限制最小二乘估计 故障诊断检测 舵面故障 飞机机动 生存性 机动性
下载PDF
高压电磁式互感器故障特征与判据 被引量:2
4
作者 江荣汉 《高电压技术》 EI CAS CSCD 北大核心 1994年第1期56-59,共4页
随着高压电磁式互感器可靠性研究的发展与深化.互感器故障现象与故障机理显得越来越复杂和不确定.现用系统论的观点和方法概括了互感器故障的特征,总结了现有故障判据,进而提出了故障的模糊矩阵判据,为故障诊断的计算机化和实时化... 随着高压电磁式互感器可靠性研究的发展与深化.互感器故障现象与故障机理显得越来越复杂和不确定.现用系统论的观点和方法概括了互感器故障的特征,总结了现有故障判据,进而提出了故障的模糊矩阵判据,为故障诊断的计算机化和实时化提供了基础. 展开更多
关键词 高压互感器 故障诊断 互感器
下载PDF
成品油长输管道系统中输油泵故障诊断技术应用研究 被引量:1
5
作者 何嘉宇 陈爱武 +1 位作者 韩存懂 郭俊圻 《中国石油石化》 2016年第S2期112-,共1页
对输油泵进行相应的故障检测能够保障输油泵在成品油长输管道系统中输送过程的顺利进行。本文主要对输油泵的机组会出现的主要故障形式和机组的特点以及测点的选定,输油泵故障的振动检测诊断方法进行了相关的阐述。
关键词 成品油 输油泵 故障诊断检测
原文传递
Fault detection and diagnosis of permanent-magnetic DC motors based on current analysis and BP neural networks 被引量:1
6
作者 刘曼兰 朱春波 王铁成 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期266-270,共5页
In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural n... In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper. 展开更多
关键词 DC motor current analysis BP neural networks fault detection fault diagnosis
下载PDF
Fault Detection and Diagnosis of a Gearbox in Marine Propulsion Systems Using Bispectrum Analysis and Artificial Neural Networks 被引量:3
7
作者 李志雄 严新平 +2 位作者 袁成清 赵江滨 彭中笑 《Journal of Marine Science and Application》 2011年第1期17-24,共8页
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other com... A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance. 展开更多
关键词 marine propulsion system fault diagnosis vibration analysis BISPECTRUM artificial neural networks Article
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部