针对经验模态分解(empirical model decomposition,EMD)所得的本质特征函数(intrinsic model function,IMF)之间存在相互耦合、难以清晰提取高速列车轮对轴承的故障特征问题,提出一种轮对轴承故障检测的新方法。该方法的核心是应用EMD...针对经验模态分解(empirical model decomposition,EMD)所得的本质特征函数(intrinsic model function,IMF)之间存在相互耦合、难以清晰提取高速列车轮对轴承的故障特征问题,提出一种轮对轴承故障检测的新方法。该方法的核心是应用EMD自适应地分解轴承振动信号,得到多尺度的IMF,应用单尺度的IMF信号构造Hankel矩阵,对该矩阵进行奇异值分解(singular value decomposition,SVD),应用奇异值的差分谱来选择其关键奇异值,对关键奇异值进行奇异值重构,通过重构信号的包络谱分析来检测轮对轴承的故障。利用高速列车轮对轴承故障数据对该检测方法和模型进行验证,结果表明:该方法能够清晰地提取表征轴承故障特性的基频、倍频成分,突显故障频率特征,具有一定工程应用前景。展开更多
文摘针对经验模态分解(empirical model decomposition,EMD)所得的本质特征函数(intrinsic model function,IMF)之间存在相互耦合、难以清晰提取高速列车轮对轴承的故障特征问题,提出一种轮对轴承故障检测的新方法。该方法的核心是应用EMD自适应地分解轴承振动信号,得到多尺度的IMF,应用单尺度的IMF信号构造Hankel矩阵,对该矩阵进行奇异值分解(singular value decomposition,SVD),应用奇异值的差分谱来选择其关键奇异值,对关键奇异值进行奇异值重构,通过重构信号的包络谱分析来检测轮对轴承的故障。利用高速列车轮对轴承故障数据对该检测方法和模型进行验证,结果表明:该方法能够清晰地提取表征轴承故障特性的基频、倍频成分,突显故障频率特征,具有一定工程应用前景。