四效催化剂的活性组分La0.8K0.2Co0.7Mn0.3O3的合成温度对柴油烟气的净化效果有较大影响,通过X射线衍射、电子扫描电镜、程序升温、比表面积检测和在线效率检测发现,750℃合成的四效催化剂净化柴油烟气的效果最好。通过K和Mn同时部分取...四效催化剂的活性组分La0.8K0.2Co0.7Mn0.3O3的合成温度对柴油烟气的净化效果有较大影响,通过X射线衍射、电子扫描电镜、程序升温、比表面积检测和在线效率检测发现,750℃合成的四效催化剂净化柴油烟气的效果最好。通过K和Mn同时部分取代La Co O3中La和Co,探讨K和Mn对钙钛矿结构和烟气净化效果的影响。比表面积检测发现,涂覆改性γ-Al2O3后,整体式催化剂比表面积增加,催化性能得到有效改善。展开更多
Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer...Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer process,which limits the efficiency of electrocatalytic water splitting.Therefore,it is urgent to develop highly active OER catalysts to accelerate reaction kinetics.Coupling single atoms and clusters in one system is an innovative approach for developing efficient catalysts that can synergistically optimize the adsorption and configuration of intermediates and improve catalytic activity.However,research in this area is still scarce.Herein,we constructed a heterogeneous single-atom cluster system by anchoring Ir single atoms and Co clusters on the surface of Ni(OH)_(2)nanosheets.Ir single atoms and Co clusters synergistically improved the catalytic activity toward the OER.Specifically,Co_(n)Ir_(1)/Ni(OH)_(2)required an overpotential of 255 mV at a current density of 10 mA·cm^(−2),which was 60 mV and 67 mV lower than those of Co_(n)/Ni(OH)_(2)and Ir1/Ni(OH)_(2),respectively.The turnover frequency of Co_(n)Ir_(1)/Ni(OH)_(2)was 0.49 s^(−1),which was 4.9 times greater than that of Co_(n)/Ni(OH)_(2)at an overpotential of 300 mV.展开更多
The fractal theory was introduced into the gas solid catalytic reaction system to describe the influence of the surface irregularity of catalyst on the gas solid catalytic reaction.A fractal reaction diffusion mode...The fractal theory was introduced into the gas solid catalytic reaction system to describe the influence of the surface irregularity of catalyst on the gas solid catalytic reaction.A fractal reaction diffusion model is proposed for irregular particles.Based on the shape characterization of the irregular particle,the mth order irreversible reactions are theoretically analyzed.A steady state equation of material balance and its solution as the concentration profile of reacting species are given for the reaction diffusion model for irregular particles.Meanwhile,the effectiveness factors are also expressed with fractal dimension.The results indicate that the higher the fractal dimensions,the higher the total reaction rate,and with the increase of the fractal dimension,the utilization factor of the catalyst is deeply increased.展开更多
As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among ...As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among various semiconductors,TiO2 has been regarded as the best and most widely investigated photocatalyst in the past 10 years. Based on the fundamentals of photocatalysis and surface chemistry of TiO2 nanomaterials,we herein summarize and discuss the achievements in the different surface modification strategies employed to date such as surface doping and sensitization,construction of surface heterojunctions,loading of nano-sized co-catalysts,increase in the accessible surface areas,and usage of surface F effects and exposure of highly reactive facets. Especially,the interesting synergistic effects of these different surface modification strategies deserve more attention in the near future. Studying these important advances in photocatalysis fundamentals,and surface chemistry and modification may offer new opportunities for designing highly efficient TiO2-based and non-TiO2-based photocatalysts for solar fuel production,environmental remediation,organic photosynthesis,and other related fields such as solar cell device fabrication,thermal catalysis,and separation and purification.展开更多
The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photo...The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photocatalysts were synthesized and subsequently applied for the photocatalytic reduction of CO_(2)with H2O under simulated solar irradiation.The best photocatalytic performance was demonstrated by the Au and 3%MgO-co-modified g-C_(3)N_(4)photocatalysts with CO,CH_(4),CH3OH,and CH3CHO yields of 423.9,83.2,47.2,and 130.4μmol/g,respectively,in a 3-h reaction.We investigated the effects of MgO and Au as cocatalysts on photocatalytic behaviors,respectively.The characterizations and experimental results showed that the enhanced photocatalytic activity was due to the synergistic effect among the components of the ternary photocatalyst.The cocatalyst MgO can activate CO_(2)(adsorbed at the interface between the MgO and Au particles),and the Mg-N bonds formed in the MgO-CN nanosheets played an important role in the charge transfer.Meanwhile,the Au particles that were modified into MgO/g-C_(3)N_(4)can increase the absorption of visible light via the surface plasmon resonance effect and further reduce the activation energies of the photoreduction of CO_(2)using H2O.This study provided an effective method for the modification of traditional primary photocatalysts with promising performance for photocatalytic CO_(2)reduction.展开更多
Anovel solid acid catalyst, which was prepared from sodium alginate (SA) and metal chlorides and characterized with XRD and FT-IR spectrometry, was used for the preparation of biodiesel via esterification reaction. Th...Anovel solid acid catalyst, which was prepared from sodium alginate (SA) and metal chlorides and characterized with XRD and FT-IR spectrometry, was used for the preparation of biodiesel via esterification reaction. The study results showed that the aluminum-alginate complex prepared in a cheap and easy way exhibited high catalytic activity, and a 92.6% conversion of methyl oleate was obtained in the presence of 4m% of catalyst dosage upon refluxing for 3h of methanol and acid mixed in a molar ratio of 10:1. It should be noted that the catalyst can be applied to the esterification reaction of fatty acids with various carbon chain length on methanol or different short chain alcohols, indicating that the catalyst is suitable for the preparation of biodiesel from waste oils with a high acid value.展开更多
文摘四效催化剂的活性组分La0.8K0.2Co0.7Mn0.3O3的合成温度对柴油烟气的净化效果有较大影响,通过X射线衍射、电子扫描电镜、程序升温、比表面积检测和在线效率检测发现,750℃合成的四效催化剂净化柴油烟气的效果最好。通过K和Mn同时部分取代La Co O3中La和Co,探讨K和Mn对钙钛矿结构和烟气净化效果的影响。比表面积检测发现,涂覆改性γ-Al2O3后,整体式催化剂比表面积增加,催化性能得到有效改善。
基金supported by the National Key Research and Development Program of China(2021YFA1500500,2019-YFA0405600)the CAS Project for Young Scientists in Basic Research(YSBR-051)+6 种基金the National Science Fund for Distinguished Young Scholars(21925204)the National Natural Science Foundation of China(22202192,U19A2015,22221003,22250007,22163002)the Collaborative Innovation Program of Hefei Science Center,CAS(2022HSCCIP004)the International Partnership,the DNL Cooperation Fund,CAS(DNL202003)the USTC Research Funds of the Double First-Class Initiative(YD9990002016,YD999000-2014)the Program of Chinese Academy of Sciences(123GJHZ2022101GC)the Fundamental Research Funds for the Central Universities(WK9990000095,WK999000-0124).
文摘Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer process,which limits the efficiency of electrocatalytic water splitting.Therefore,it is urgent to develop highly active OER catalysts to accelerate reaction kinetics.Coupling single atoms and clusters in one system is an innovative approach for developing efficient catalysts that can synergistically optimize the adsorption and configuration of intermediates and improve catalytic activity.However,research in this area is still scarce.Herein,we constructed a heterogeneous single-atom cluster system by anchoring Ir single atoms and Co clusters on the surface of Ni(OH)_(2)nanosheets.Ir single atoms and Co clusters synergistically improved the catalytic activity toward the OER.Specifically,Co_(n)Ir_(1)/Ni(OH)_(2)required an overpotential of 255 mV at a current density of 10 mA·cm^(−2),which was 60 mV and 67 mV lower than those of Co_(n)/Ni(OH)_(2)and Ir1/Ni(OH)_(2),respectively.The turnover frequency of Co_(n)Ir_(1)/Ni(OH)_(2)was 0.49 s^(−1),which was 4.9 times greater than that of Co_(n)/Ni(OH)_(2)at an overpotential of 300 mV.
文摘The fractal theory was introduced into the gas solid catalytic reaction system to describe the influence of the surface irregularity of catalyst on the gas solid catalytic reaction.A fractal reaction diffusion model is proposed for irregular particles.Based on the shape characterization of the irregular particle,the mth order irreversible reactions are theoretically analyzed.A steady state equation of material balance and its solution as the concentration profile of reacting species are given for the reaction diffusion model for irregular particles.Meanwhile,the effectiveness factors are also expressed with fractal dimension.The results indicate that the higher the fractal dimensions,the higher the total reaction rate,and with the increase of the fractal dimension,the utilization factor of the catalyst is deeply increased.
基金supported by the Industry and Research Collaborative Innovation Major Projects Of Guangzhou(201508020098)the National Natural Science Foundation of China(20906034+2 种基金21173088and 21207041)the State Key Laboratory of Advanced Technology for Material Synthesis and Processing,Wuhan University of Technology(2015-KF-7)~~
文摘As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among various semiconductors,TiO2 has been regarded as the best and most widely investigated photocatalyst in the past 10 years. Based on the fundamentals of photocatalysis and surface chemistry of TiO2 nanomaterials,we herein summarize and discuss the achievements in the different surface modification strategies employed to date such as surface doping and sensitization,construction of surface heterojunctions,loading of nano-sized co-catalysts,increase in the accessible surface areas,and usage of surface F effects and exposure of highly reactive facets. Especially,the interesting synergistic effects of these different surface modification strategies deserve more attention in the near future. Studying these important advances in photocatalysis fundamentals,and surface chemistry and modification may offer new opportunities for designing highly efficient TiO2-based and non-TiO2-based photocatalysts for solar fuel production,environmental remediation,organic photosynthesis,and other related fields such as solar cell device fabrication,thermal catalysis,and separation and purification.
文摘The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photocatalysts were synthesized and subsequently applied for the photocatalytic reduction of CO_(2)with H2O under simulated solar irradiation.The best photocatalytic performance was demonstrated by the Au and 3%MgO-co-modified g-C_(3)N_(4)photocatalysts with CO,CH_(4),CH3OH,and CH3CHO yields of 423.9,83.2,47.2,and 130.4μmol/g,respectively,in a 3-h reaction.We investigated the effects of MgO and Au as cocatalysts on photocatalytic behaviors,respectively.The characterizations and experimental results showed that the enhanced photocatalytic activity was due to the synergistic effect among the components of the ternary photocatalyst.The cocatalyst MgO can activate CO_(2)(adsorbed at the interface between the MgO and Au particles),and the Mg-N bonds formed in the MgO-CN nanosheets played an important role in the charge transfer.Meanwhile,the Au particles that were modified into MgO/g-C_(3)N_(4)can increase the absorption of visible light via the surface plasmon resonance effect and further reduce the activation energies of the photoreduction of CO_(2)using H2O.This study provided an effective method for the modification of traditional primary photocatalysts with promising performance for photocatalytic CO_(2)reduction.
基金financially supported by the International Science & Technology Cooperation Program of China(No.2010DFB60840)the Key Science and Technology Project of Guizhou Province(No.20076004)+1 种基金the Social Development S&T Program(No.SZ-[2009]3011)the National Key Technology R&D Program(No.2006BAD07A12)
文摘Anovel solid acid catalyst, which was prepared from sodium alginate (SA) and metal chlorides and characterized with XRD and FT-IR spectrometry, was used for the preparation of biodiesel via esterification reaction. The study results showed that the aluminum-alginate complex prepared in a cheap and easy way exhibited high catalytic activity, and a 92.6% conversion of methyl oleate was obtained in the presence of 4m% of catalyst dosage upon refluxing for 3h of methanol and acid mixed in a molar ratio of 10:1. It should be noted that the catalyst can be applied to the esterification reaction of fatty acids with various carbon chain length on methanol or different short chain alcohols, indicating that the catalyst is suitable for the preparation of biodiesel from waste oils with a high acid value.