The Ce/Cr coating was homogenously deposited onto the reticulated open-cell Ni?Cr?Fe alloy foam by the pack cementation process.The mechanical properties of the Ce/Cr coated alloy foams were investigated by the quasi-...The Ce/Cr coating was homogenously deposited onto the reticulated open-cell Ni?Cr?Fe alloy foam by the pack cementation process.The mechanical properties of the Ce/Cr coated alloy foams were investigated by the quasi-static compression test.Simultaneously,the deformation and failure mechanisms of Ce/Cr coated alloy foams were discussed.The results show that the adding amount of CeO2powders influences the mechanical properties of the Ce/Cr coated alloy foams.Despite an increase in density as compared to the uncoated foams,the Ce/Cr coated foams exhibit improvement in both yield strength and energy-absorption performance.Especially,the energy-absorption performance of2%Ce/Cr(mass fraction)coated alloy foam is averagely1.9times as high as that of the bare Ni?Cr?Fe alloy foam.In addition,the mechanical properties of the Ce/Cr coated alloy foams increase with the increase of strain rate.The distortion and cracking are mainly the deformation behavior of the Ce/Cr coated alloy foam,confirmed by SEM images.展开更多
Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type spe...Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type specimen containing cracks with inclined angles of 0°,45° and 90° were also established to investigate the crack propagation and damage evolution under dynamic loading. The results show that the simulation results are in accordance with the failure patterns of specimens in experimental test. The interactions between stress wave and crack with different inclined angles are different; damage usually appears around the crack tips firstly; and then more damage zones develop away from the foregoing damage zone after a period of energy accumulation; eventually,the damage zones run through the specimen in the direction of applied loading and split the specimen into pieces.展开更多
The investigation of supporting pressure is of great significance to the design of underground structures.Based on the kinematical approach of limit analysis,an improved failure mechanism is proposed,and the supportin...The investigation of supporting pressure is of great significance to the design of underground structures.Based on the kinematical approach of limit analysis,an improved failure mechanism is proposed,and the supporting pressure is investigated for deep buried cavity.Three failure mechanisms are first introduced according to the existing failure mechanisms of geotechnical structures of limit analysis.A comparison with respect to the optimal failure mechanisms and the upper bound solutions provided among these three mechanisms are then conducted in an attempt to obtain the improved failure mechanism.The results provided by the improved failure mechanism are in good agreement with those by the existing method,the numerical solution and field monitoring,which demonstrates that the proposed failure mechanism is effective for the upper bound analysis of supporting pressure.展开更多
Based on the theory of system dynamics, the paper analyzes the mechanism of socio-economic benefits of highway projects and establishes the system dynamics model of regional economic-highway development. Then taking J...Based on the theory of system dynamics, the paper analyzes the mechanism of socio-economic benefits of highway projects and establishes the system dynamics model of regional economic-highway development. Then taking Jinji(Tianjin--Jixian) Highway of Tianjin as an example, the errors of system simulation are tested, and the system dynamics model built is verified to be quite stable, which has a high performance. Through the comparison of simulation results with and without Jinji Highway, the paper simulates and predicts the socio-economie benefit of each year from 2003 to 2013. Thus the quantification evaluation of socio-economic benefit of highway project is realized and will provide the theory instructions for similar projects in the future.展开更多
基金Project(51501133)supported by the National Natural Science Foundation of ChinaProject(T201629)supported by the Universities of Hubei Province Outstanding Young Scientific and Technological Innovation Team Plans,ChinaProject(AWJ-M16-11)supported by the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘The Ce/Cr coating was homogenously deposited onto the reticulated open-cell Ni?Cr?Fe alloy foam by the pack cementation process.The mechanical properties of the Ce/Cr coated alloy foams were investigated by the quasi-static compression test.Simultaneously,the deformation and failure mechanisms of Ce/Cr coated alloy foams were discussed.The results show that the adding amount of CeO2powders influences the mechanical properties of the Ce/Cr coated alloy foams.Despite an increase in density as compared to the uncoated foams,the Ce/Cr coated foams exhibit improvement in both yield strength and energy-absorption performance.Especially,the energy-absorption performance of2%Ce/Cr(mass fraction)coated alloy foam is averagely1.9times as high as that of the bare Ni?Cr?Fe alloy foam.In addition,the mechanical properties of the Ce/Cr coated alloy foams increase with the increase of strain rate.The distortion and cracking are mainly the deformation behavior of the Ce/Cr coated alloy foam,confirmed by SEM images.
基金Projects(50534030, 50674107, 50490274) supported by the National Natural Science Foundation of ChinaProject(06JJ3028) supported by the Provincial Natural Science Foundation of Hunan, China
文摘Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type specimen containing cracks with inclined angles of 0°,45° and 90° were also established to investigate the crack propagation and damage evolution under dynamic loading. The results show that the simulation results are in accordance with the failure patterns of specimens in experimental test. The interactions between stress wave and crack with different inclined angles are different; damage usually appears around the crack tips firstly; and then more damage zones develop away from the foregoing damage zone after a period of energy accumulation; eventually,the damage zones run through the specimen in the direction of applied loading and split the specimen into pieces.
基金Project(51674115)supported by the National Natural Science Foundation of ChinaProject(51434006)supported by the Key Program of the National Natural Science Foundation of ChinaProject(2015JJ4024)supported by the Natural Science Foundation of Hunan Province,China
文摘The investigation of supporting pressure is of great significance to the design of underground structures.Based on the kinematical approach of limit analysis,an improved failure mechanism is proposed,and the supporting pressure is investigated for deep buried cavity.Three failure mechanisms are first introduced according to the existing failure mechanisms of geotechnical structures of limit analysis.A comparison with respect to the optimal failure mechanisms and the upper bound solutions provided among these three mechanisms are then conducted in an attempt to obtain the improved failure mechanism.The results provided by the improved failure mechanism are in good agreement with those by the existing method,the numerical solution and field monitoring,which demonstrates that the proposed failure mechanism is effective for the upper bound analysis of supporting pressure.
基金Technology Plan Projects of Tianjin Planning Bureau(No.2010H3-0011)
文摘Based on the theory of system dynamics, the paper analyzes the mechanism of socio-economic benefits of highway projects and establishes the system dynamics model of regional economic-highway development. Then taking Jinji(Tianjin--Jixian) Highway of Tianjin as an example, the errors of system simulation are tested, and the system dynamics model built is verified to be quite stable, which has a high performance. Through the comparison of simulation results with and without Jinji Highway, the paper simulates and predicts the socio-economie benefit of each year from 2003 to 2013. Thus the quantification evaluation of socio-economic benefit of highway project is realized and will provide the theory instructions for similar projects in the future.