To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting materia...To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting material)at 20 and 3℃.The results show that low temperature only delays the strength development of FSAC grouting material within the first 3 d.Then,the effect of four typical early strength synergists on the early properties of FSAC grouting material was evaluated to optimize the early(£1 d)strength at 3℃.The most effective synergist,Ca(HCOO)_(2),which enhances the low-temperature early strength without compromising fluidity was selected based on strength and fluidity tests.Its micro-mechanism was analyzed by XRD,TG,and SEM methods.The results reveal that the most suitable dosage range is 0.3 wt%−0.5 wt%.Proper addition of Ca(HCOO)_(2)changed the crystal morphology of the hydration products,decreased the pore size and formed more compact hydration products by interlocking and overlapping.However,excessive addition of Ca(HCOO)_(2)inhibited the hydration reaction,resulting in a simple and loose structure of the hydration products.The research results have reference value for controlling surrounding rock deformation and preventing water and mud inrushes during the excavation in cold region tunnels.展开更多
The effect of aging on the microstructure and mechanical properties of AZ80 and ZK60 wrought magnesium alloys was studied with optical microscope and mechanical testers. The results demonstrate that both the tensile s...The effect of aging on the microstructure and mechanical properties of AZ80 and ZK60 wrought magnesium alloys was studied with optical microscope and mechanical testers. The results demonstrate that both the tensile strength and elongation of AZ80 alloy increase firstly and then decrease as the aging temperature rises, the peak values appear when the aging temperature is 170 ℃ The hardness of ZK60 alloy increases firstly and then decreases as the aging temperature rises, and the hardness reaches its peak value at 170 ℃. However, the toughness of the alloy is just the opposite. Moreover, ZK60 alloy has good performances in both impact toughness and other mechanical properties at the aging temperature from 140 ℃ to 200 ℃.展开更多
A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechan...A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechanical properties and creep aging process. The results show that creep strain and creep rate increase with the applied stress. The hardness of specimen varies with aging time and stress in a effect of temperature on hardness of material is seen in the range of 185-195 ℃. The optimum mechanical properties are obtained at the conditions of (200 MPa, 185 ℃, 8 h) as the result of the coexistence of strengthening S" and S' phases in the matrix by transmission electron microscopy (TEM). TEM observation shows that applied stress promotes the formation and growth of precioitates and no obvious stress orientation effect is observed in the matrix.展开更多
The microstructure, age hardening behavior and mechanical properties of an Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy prepared by casting and hot extrusion techniques were investigated. The solution-treated (T4 temper) alloys ...The microstructure, age hardening behavior and mechanical properties of an Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy prepared by casting and hot extrusion techniques were investigated. The solution-treated (T4 temper) alloys were extruded at 400, 450 and 500 °C with an extrusion ratio of 10:1, respectively. Optimized mechanical properties were obtained by extrusion at 400 °C followed by T5 treatment under the combined effects of grain refinement and precipitation strengthening. The alloy exhibits a grain size of about 5.0 μm, initial and peak microhardness of HV 109 and HV 129, respectively. The tensile yield strength, ultimate tensile strength and elongation at room temperature are 391 MPa, 430 MPa and 5.2%, respectively.展开更多
A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an i...A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.展开更多
The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa f...The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa for 20 h. Increasing temperature resulted in a noteworthy change in creep ageing behaviour, including a variation in creep curves, an improvement in creep rate during early creep ageing, and an increased creep strain. Tensile tests indicate that the specimen aged at higher temperature reached peak strength within a shorter time. Transmission electron microscopy(TEM) was employed to explore the effect of temperature on the microstructural evolution of the AA2198 during creep ageing deformation. Many larger dislocations and even tangled dislocation structures were observed in the sample aged at higher temperature. The number of T1 precipitates increased at higher ageing temperature at the same ageing time. Based on the analysed results, a new mechanism, considering the combined effects of the formation of larger dislocation structures induced by higher temperature and diffusion of solute atoms towards these larger or tangled dislocations, was proposed to explain the effect of temperature on microstructural evolution and creep behaviour.展开更多
The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),trans...The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images.The results show that the tensile strength of the Li-containing alloy can be significantly improved;however,the ductility is sharply decreased and the fracture mechanism changes from ductile fracture to intergranular fracture.The elasticity modulus of the Li-containing alloy increases by 11.6%compared with the base alloy.The microstructure observation shows that the Li addition can absolutely change the precipitation behavior of the base alloy,andδ′-Al_(3)Li phase becomes the main precipitates.Besides,β′′-Mg_(2)Si andδ′-Al_(3)Li dual phases precipitation can be visibly observed at 170℃ ageing for 100 h,although the quantity ofδ′-Al_(3)Li phase is more thanβ′′-Mg_(2)Si phase.The width of the precipitate-free zone(PFZ)of the Li-containing alloy is much wider at the over-ageing state than the base alloy,which has a negative impact on the ductile and results in the decrease of elongation.展开更多
Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy...Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance.What’ s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance;and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance.展开更多
Objective: The aim of this study was to observe the efficacy of air wave pressure therapeutic equipment in pre- vention of oxaliplatin-inducted neurotoxicity. Methods: Forty-five patients with colorectal cancer were...Objective: The aim of this study was to observe the efficacy of air wave pressure therapeutic equipment in pre- vention of oxaliplatin-inducted neurotoxicity. Methods: Forty-five patients with colorectal cancer were randomly divided into treatment group and control group, treatment group were given the treatment of air wave pressure therapeutic equipment during chemotherapy with oxaliplatin, the control group were given preventive treatment, the oxaliplatin-inducted neurotoxicity was evaluated after each cycle of chemotherapy. Evaluate the chemotherapy efficacy after the third cycle and sixth cycle of chemotherapy. Results: The treatment group have lower incidence of peripheral nerve toxicity than the control group, the difference was statistically significant (X2= 13.93; P 〈 0.01). Chemotherapy effect between the 2 groups was no significant difference (P 〉 0.05). Conclusion: Treatment with air wave pressure therapeutic equipment can reduce the incidence of peripheral nerve toxicity during oxaliplatin chemotherapy.展开更多
The water level in a deep well instantly responds to the earth’s tide and atmospheric pressure, and varies accordingly, not only in terms of amplitude but also in the phase lag. Therefore, phase lag correction is use...The water level in a deep well instantly responds to the earth’s tide and atmospheric pressure, and varies accordingly, not only in terms of amplitude but also in the phase lag. Therefore, phase lag correction is used in analyzing digital groundwater observation data in eastern China. Calculation results presented by the authors in this paper show that the correction method is effective in the identification of anomalous changes for short-term seismic precursors. The correction method can also be applied to the processing of observed deformation and tilt data.展开更多
With the aim of drawing valuable lessons for the management and planning of similar business transformation initiatives, this paper critically evaluates a change project at an organization in South Africa, from three ...With the aim of drawing valuable lessons for the management and planning of similar business transformation initiatives, this paper critically evaluates a change project at an organization in South Africa, from three inter-woven dimensions: creating the climate for change, engaging and enabling the organization, and sustaining change. Firstly, a key achievement demonstrates that attempts to create a conducive climate for change should recognize that the unit of change in any organization is, ultimately, the individual. Levers for such initiatives should navigate the macro-organizational change narrative and translate change generalities into specific individual actions and behaviors. Secondly, learning from an implementation gap, similar efforts would gain better traction in engagement and empowerment by leveraging on an influential cross-functional team made up of enthusiastic supporters of the required change, to foster ownership and to embrace change across the organization. Key characteristics that should be represented on the team include leadership skills, expertise, credibility, effective communication, and a sense of urgency. Thirdly, in terms of sustaining change, twin lessons surge to the fore. On a positive note, by progressing its values-set into an annual staff award, there is a pointer to the potential of innovatively encouraging and rewarding employees to live the value qualities. And, on the flip side, a need is underscore of the critical role of seamless executive leadership, providing ongoing co-creating windows for instilling positive attitudes and creating synergies among related strategic initiatives.展开更多
This thesis studies the concept and research background of filzziness and fuzzy theory, then committing further enumeration and analysis of the application of fuzzy theory in the fields of linguistics and literature. ...This thesis studies the concept and research background of filzziness and fuzzy theory, then committing further enumeration and analysis of the application of fuzzy theory in the fields of linguistics and literature. On this basis, the effectiveness and rationalization of the fuzzy theory's application in the English literature teaching were confirmed from many aspects. Among them, it is mainly investigated and analyzed from the objective factors and subjective factors. Subjective aspects mainly contain students' different cognitive ability, and the diversity existed in teachers' teaching and guiding methods. Objective aspects mainly include that the literature language and literature thoughts itself have the unique ambiguity. Finally, in summing up the investigation results the author put forward the essence of English literature teaching activity and put forward the methods to improve English literature teaching.展开更多
Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling differ...Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling different numbers of the Metglas thin sheets (30μm for each layer) while the PZT plate is maintained at constant thickness (0.5 mm). At 1 kHz of the applied alter- nating magnetic field, only one peak presents in the ME coefficient (OCME) versus static magnetic field (Hs) curve. As the thickness ratio n increases, the peak value of αME first increases and reaches a maximum at approximately n = 0.519, and then decreases afterward. The peak position (Hoptim) moves steadily toward a higher value as n increases. It is suggested that the re- laxation factor k of the magnetic phase is reduced as n increases, causing the decrease of the piezomagnetic coefficient d11,m and the increase of Hoptim. By employing the micromechanics model and considering the degradation of dll,m with n, an opti- mized thickness ratio of 0.5 is predicted, which is in agreement with the experimental observations. The resonance frequency of the laminate increases with n, which is consistent with the calculation using a straightforward mixture law.展开更多
Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjec...Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjected to uniaxial tension strain with one-void and two-void at the centered grain boundary were employed to analyze the effect of specimen size, temperature and applied strain rate on the stress-strain response, incipient yield strength and macroscopic effective Young's modulus. The evolutions of dislocations, twin bands and void shapes under different specimen sizes were also presented. The obtained results show that, regardless of the void numbers, the specimen sizes, temperature, the applied strain rate had significant influence on the void shape evolution, stress-strain curve and incipient yield strength, while negligible effects on the macroscopic effective Young's modulus except for the temperature. Moreover, the voids growth rate along the grain boundary was also found to be associated with the specimen sizes.展开更多
基金Projcet(52279119)supported by the National Natural Science Foundation of ChinaProject(XZ202201ZY0021G)supported by the Science and Technology Planning Project of Xizang Autonomous Region,China+1 种基金Project(2019QZKK0904)supported by the Second Xizang Plateau Scientific Expedition and Research Program of ChinaProject(51922104)supported by the National Natural Science Foundation for Distinguished Young Scholars of China。
文摘To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting material)at 20 and 3℃.The results show that low temperature only delays the strength development of FSAC grouting material within the first 3 d.Then,the effect of four typical early strength synergists on the early properties of FSAC grouting material was evaluated to optimize the early(£1 d)strength at 3℃.The most effective synergist,Ca(HCOO)_(2),which enhances the low-temperature early strength without compromising fluidity was selected based on strength and fluidity tests.Its micro-mechanism was analyzed by XRD,TG,and SEM methods.The results reveal that the most suitable dosage range is 0.3 wt%−0.5 wt%.Proper addition of Ca(HCOO)_(2)changed the crystal morphology of the hydration products,decreased the pore size and formed more compact hydration products by interlocking and overlapping.However,excessive addition of Ca(HCOO)_(2)inhibited the hydration reaction,resulting in a simple and loose structure of the hydration products.The research results have reference value for controlling surrounding rock deformation and preventing water and mud inrushes during the excavation in cold region tunnels.
基金Projects(50735005,50605059)supported by the National Natural Foundation of ChinaProject(2007021026)supported by the Shanxi Provincial Science Foundation for Youths, ChinaProject(20081027)supported by the Development for Science and Technology in Higher Educational Institutes, China
文摘The effect of aging on the microstructure and mechanical properties of AZ80 and ZK60 wrought magnesium alloys was studied with optical microscope and mechanical testers. The results demonstrate that both the tensile strength and elongation of AZ80 alloy increase firstly and then decrease as the aging temperature rises, the peak values appear when the aging temperature is 170 ℃ The hardness of ZK60 alloy increases firstly and then decreases as the aging temperature rises, and the hardness reaches its peak value at 170 ℃. However, the toughness of the alloy is just the opposite. Moreover, ZK60 alloy has good performances in both impact toughness and other mechanical properties at the aging temperature from 140 ℃ to 200 ℃.
基金Project(51235010)supported by the National Natural Science Foundation of ChinaProject(2010CB731700)supported by the National Basic Research Program of ChinaProject(20120162110003)supported by PhD Programs Foundation of Ministry of Education of China
文摘A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechanical properties and creep aging process. The results show that creep strain and creep rate increase with the applied stress. The hardness of specimen varies with aging time and stress in a effect of temperature on hardness of material is seen in the range of 185-195 ℃. The optimum mechanical properties are obtained at the conditions of (200 MPa, 185 ℃, 8 h) as the result of the coexistence of strengthening S" and S' phases in the matrix by transmission electron microscopy (TEM). TEM observation shows that applied stress promotes the formation and growth of precioitates and no obvious stress orientation effect is observed in the matrix.
基金Projects (50674067, 51074106) supported by the National Natural Science Foundation of ChinaProject (2009AA033501) supported by the High-Tech Research and Development Program of ChinaProject (09JC1408200) supported by the Science and Technology Commission of Shanghai Municipality, China
文摘The microstructure, age hardening behavior and mechanical properties of an Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy prepared by casting and hot extrusion techniques were investigated. The solution-treated (T4 temper) alloys were extruded at 400, 450 and 500 °C with an extrusion ratio of 10:1, respectively. Optimized mechanical properties were obtained by extrusion at 400 °C followed by T5 treatment under the combined effects of grain refinement and precipitation strengthening. The alloy exhibits a grain size of about 5.0 μm, initial and peak microhardness of HV 109 and HV 129, respectively. The tensile yield strength, ultimate tensile strength and elongation at room temperature are 391 MPa, 430 MPa and 5.2%, respectively.
文摘A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.
基金Project(2017YFB0306300)supported by the National Key R&D Program of ChinaProjects(51601060,51675538)supported by the National Natural Science Foundation of China。
文摘The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa for 20 h. Increasing temperature resulted in a noteworthy change in creep ageing behaviour, including a variation in creep curves, an improvement in creep rate during early creep ageing, and an increased creep strain. Tensile tests indicate that the specimen aged at higher temperature reached peak strength within a shorter time. Transmission electron microscopy(TEM) was employed to explore the effect of temperature on the microstructural evolution of the AA2198 during creep ageing deformation. Many larger dislocations and even tangled dislocation structures were observed in the sample aged at higher temperature. The number of T1 precipitates increased at higher ageing temperature at the same ageing time. Based on the analysed results, a new mechanism, considering the combined effects of the formation of larger dislocation structures induced by higher temperature and diffusion of solute atoms towards these larger or tangled dislocations, was proposed to explain the effect of temperature on microstructural evolution and creep behaviour.
基金Project(2016YFB0300802)supported by the National Key Research and Development Program of China。
文摘The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images.The results show that the tensile strength of the Li-containing alloy can be significantly improved;however,the ductility is sharply decreased and the fracture mechanism changes from ductile fracture to intergranular fracture.The elasticity modulus of the Li-containing alloy increases by 11.6%compared with the base alloy.The microstructure observation shows that the Li addition can absolutely change the precipitation behavior of the base alloy,andδ′-Al_(3)Li phase becomes the main precipitates.Besides,β′′-Mg_(2)Si andδ′-Al_(3)Li dual phases precipitation can be visibly observed at 170℃ ageing for 100 h,although the quantity ofδ′-Al_(3)Li phase is more thanβ′′-Mg_(2)Si phase.The width of the precipitate-free zone(PFZ)of the Li-containing alloy is much wider at the over-ageing state than the base alloy,which has a negative impact on the ductile and results in the decrease of elongation.
基金Project(TC190H3ZV/2) supported by the National Building Project of Application Demonstration Platform on New Materials Products,China。
文摘Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance.What’ s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance;and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance.
文摘Objective: The aim of this study was to observe the efficacy of air wave pressure therapeutic equipment in pre- vention of oxaliplatin-inducted neurotoxicity. Methods: Forty-five patients with colorectal cancer were randomly divided into treatment group and control group, treatment group were given the treatment of air wave pressure therapeutic equipment during chemotherapy with oxaliplatin, the control group were given preventive treatment, the oxaliplatin-inducted neurotoxicity was evaluated after each cycle of chemotherapy. Evaluate the chemotherapy efficacy after the third cycle and sixth cycle of chemotherapy. Results: The treatment group have lower incidence of peripheral nerve toxicity than the control group, the difference was statistically significant (X2= 13.93; P 〈 0.01). Chemotherapy effect between the 2 groups was no significant difference (P 〉 0.05). Conclusion: Treatment with air wave pressure therapeutic equipment can reduce the incidence of peripheral nerve toxicity during oxaliplatin chemotherapy.
基金This project was sponsored by the Science and Technology Development Program(031060107) ,Shandong Province .
文摘The water level in a deep well instantly responds to the earth’s tide and atmospheric pressure, and varies accordingly, not only in terms of amplitude but also in the phase lag. Therefore, phase lag correction is used in analyzing digital groundwater observation data in eastern China. Calculation results presented by the authors in this paper show that the correction method is effective in the identification of anomalous changes for short-term seismic precursors. The correction method can also be applied to the processing of observed deformation and tilt data.
文摘With the aim of drawing valuable lessons for the management and planning of similar business transformation initiatives, this paper critically evaluates a change project at an organization in South Africa, from three inter-woven dimensions: creating the climate for change, engaging and enabling the organization, and sustaining change. Firstly, a key achievement demonstrates that attempts to create a conducive climate for change should recognize that the unit of change in any organization is, ultimately, the individual. Levers for such initiatives should navigate the macro-organizational change narrative and translate change generalities into specific individual actions and behaviors. Secondly, learning from an implementation gap, similar efforts would gain better traction in engagement and empowerment by leveraging on an influential cross-functional team made up of enthusiastic supporters of the required change, to foster ownership and to embrace change across the organization. Key characteristics that should be represented on the team include leadership skills, expertise, credibility, effective communication, and a sense of urgency. Thirdly, in terms of sustaining change, twin lessons surge to the fore. On a positive note, by progressing its values-set into an annual staff award, there is a pointer to the potential of innovatively encouraging and rewarding employees to live the value qualities. And, on the flip side, a need is underscore of the critical role of seamless executive leadership, providing ongoing co-creating windows for instilling positive attitudes and creating synergies among related strategic initiatives.
文摘This thesis studies the concept and research background of filzziness and fuzzy theory, then committing further enumeration and analysis of the application of fuzzy theory in the fields of linguistics and literature. On this basis, the effectiveness and rationalization of the fuzzy theory's application in the English literature teaching were confirmed from many aspects. Among them, it is mainly investigated and analyzed from the objective factors and subjective factors. Subjective aspects mainly contain students' different cognitive ability, and the diversity existed in teachers' teaching and guiding methods. Objective aspects mainly include that the literature language and literature thoughts itself have the unique ambiguity. Finally, in summing up the investigation results the author put forward the essence of English literature teaching activity and put forward the methods to improve English literature teaching.
基金supports by the Key Research Program of National Natural Science Foundation of China(Grant No. 10832009)
文摘Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling different numbers of the Metglas thin sheets (30μm for each layer) while the PZT plate is maintained at constant thickness (0.5 mm). At 1 kHz of the applied alter- nating magnetic field, only one peak presents in the ME coefficient (OCME) versus static magnetic field (Hs) curve. As the thickness ratio n increases, the peak value of αME first increases and reaches a maximum at approximately n = 0.519, and then decreases afterward. The peak position (Hoptim) moves steadily toward a higher value as n increases. It is suggested that the re- laxation factor k of the magnetic phase is reduced as n increases, causing the decrease of the piezomagnetic coefficient d11,m and the increase of Hoptim. By employing the micromechanics model and considering the degradation of dll,m with n, an opti- mized thickness ratio of 0.5 is predicted, which is in agreement with the experimental observations. The resonance frequency of the laminate increases with n, which is consistent with the calculation using a straightforward mixture law.
基金supported by the Open Foundation of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (Grant No. KFJJ11-0Y)the National Basic Research Program of China (Grant No. 2010CB631005)the National Natural Science Foundation of China (Grant Nos. 11172148 and 51071094)
文摘Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjected to uniaxial tension strain with one-void and two-void at the centered grain boundary were employed to analyze the effect of specimen size, temperature and applied strain rate on the stress-strain response, incipient yield strength and macroscopic effective Young's modulus. The evolutions of dislocations, twin bands and void shapes under different specimen sizes were also presented. The obtained results show that, regardless of the void numbers, the specimen sizes, temperature, the applied strain rate had significant influence on the void shape evolution, stress-strain curve and incipient yield strength, while negligible effects on the macroscopic effective Young's modulus except for the temperature. Moreover, the voids growth rate along the grain boundary was also found to be associated with the specimen sizes.