A compact drain current including the variation of barrier heights and carrier quantization in ultrathin-body and double-gate Schottky barrier MOSFETs (UTBDG SBFETs) is developed. In this model, Schrodinger's equat...A compact drain current including the variation of barrier heights and carrier quantization in ultrathin-body and double-gate Schottky barrier MOSFETs (UTBDG SBFETs) is developed. In this model, Schrodinger's equation is solved using the triangular potential well approximation. The carrier density thus obtained is included in the space charge density to obtain quantum carrier confinement effects in the modeling of thin-body devices. Due to the quantum effects, the first subband is higher than the conduction band edge, which is equivalent to the band gap widening. Thus, the barrier heights at the source and drain increase and the carrier concentration decreases as the drain current decreases. The drawback of the existing models,which cannot present an accurate prediction of the drain current because they mainly consider the effects of Schottky barrier lowering (SBL) due to image forces,is eliminated. Our research results suggest that for small nonnegative Schottky barrier (SB) heights,even for zero barrier height, the tunneling current also plays a role in the total on-state currents. Verification of the present model was carried out by the device numerical simulator-Silvaco and showed good agreement.展开更多
Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K ...Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. We observed the effects of different ligands on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes. We tried to investigate chemical effects on central atoms using the behaviors of different ligands in these complexes. The experimental values of Kβ/Kα were compared with the theoretical and other experimental values of pure Co, Ni, Cu, and Zn.展开更多
Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of diff...Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of different methods are analyzed through standard sample experiment and the seismic physical modelling. Based on this, we proposed an improved method for improving accuracy of pulse transmission method, in which the samples with similar acoustic properties to the test sample are selected as the reference samples. We assess the stability and accuracy of the pulse transmission, pulse transmission insertion, and reflection wave methods for obtaining the quality factor Q using standard and reference samples and seismic physical modeling. The results suggest that the Q-values obtained by the pulse transmission method are strongly affected by diffraction and the error is 50% or greater, whereas the relative error of the improved pulse transmission method is about 10%. By using a theoretical diffraction correction method and the improved measurement method, the differences among the Q-measuring methods can be limited to within 10%.展开更多
The effect of graft yield on both the thermo-responsive hydraulicpermeability and the therrno-responsive diffusional permeability through porous membranes withplasma-grafted poly(N-isopropylacrylamide) (PNIPAM) gates ...The effect of graft yield on both the thermo-responsive hydraulicpermeability and the therrno-responsive diffusional permeability through porous membranes withplasma-grafted poly(N-isopropylacrylamide) (PNIPAM) gates was investigated. Both thermo-responsiveflat membranes and core-shell microcapsule membranes with a wide range of graft yield of PNIPAM wereprepared using a plasma-graft pore-filling polymerization method. The grafted PNIPAM was formedhomogeneously throughout the entire thickness of both the flat polyethylene membranes and themicrocapsule polyamide membranes. Both the hydraulic permeability and the diffusional permeabilitywere heavily dependent on the PNIPAM graft yield. With increasing the graft yield, the hydraulicpermeability (water flux) decreases rapidly at 25℃ because of the decrease of the pore size;however, the water flux at 40℃ increases firstly to a peak because of the increase ofhydrophobicity of the pore surface, and then decreases and finally tends to zero because of the poresize becoming smaller and smaller. For the diffusional permeability, the temperature showsdifferent effects on the diffusional permeability coefficients of solutes across the membranes. Whenthe graft yield was low, the diffusional coefficient of solute across the membrane was higher attemperature above the lower critical solution temperature (LCST) than that below the LCST; however,when the graft yield was high, the diffusional coefficient was lower at temperature above the LCSTthan that below the LCST. It is very important to choose or design a proper graft yield of PNIPAMfor obtaining a desired thermo-responsive 'on/off' hydraulic or diffusional permeability.展开更多
The semi-classical black hole tunneling radiation (Parikh-Wilczek tunneling proposal) is calculated undera minimal length uncertainty analysis.It is shown that,the generalized second law of thermodynamics may bound th...The semi-classical black hole tunneling radiation (Parikh-Wilczek tunneling proposal) is calculated undera minimal length uncertainty analysis.It is shown that,the generalized second law of thermodynamics may bound thetunneling probability radiation of a Reissner-Nordstrom black hole radiation.展开更多
To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used...To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used to construct a reference image by blurring a given image.Gradient similarity is included to obtain the gradient distortion measurement map,which can finely reflect the smallest possible changes in textures and details.Second,a saliency model is utilized to calculate image saliency.Specifically,an adaptive method is used to calculate the specific salient threshold of the blurred image,and the blurred image is binarized to yield the salient region map.Block-wise visual saliency serves as the weight to obtain the final image quality.Experimental results based on the image and video engineering database,categorial image quality database,and camera image database demonstrate that the proposed method correlates well with human judgment.Its computational complexity is also relatively low.展开更多
With the help of the elastic wave theory in the perturbed approximation the density-of-states for vibrational modes and the specific heat are studied for different hollow Si nanospheres, coupled with a semi-infinite ...With the help of the elastic wave theory in the perturbed approximation the density-of-states for vibrational modes and the specific heat are studied for different hollow Si nanospheres, coupled with a semi-infinite substrate. We find that the modes of such coupled hollow spheres are significantly broadened and shifted toward low frequencies. The specific heat of the coupled hollow nanosphere is bigger than an isolated one due to the coupling interaction and quantum size effects. The predicted coupling and size enhancements on specific heat are probed in thermal experiments.展开更多
We determine the dependence of key inertial confinement fusion (ICF) hot spot properties on the deuterium-tritium (DT) fuel adiabat accomplished by addition of heat to the cold shell. Our main result is to observe...We determine the dependence of key inertial confinement fusion (ICF) hot spot properties on the deuterium-tritium (DT) fuel adiabat accomplished by addition of heat to the cold shell. Our main result is to observe that variation of this parameter reduces the simulation to experiment discrepancy in several experimentally inferred quantities. Simulations are continued from capsule only l D simulations using the Lawrence Livermore National Laboratory ICF code, HYDRA. The continuations employ the high energy density physics (HEDP) University of Chicago code, FLASH, and a hydro only code, FronTier, modified with a radiation equation of state (EOS) model. Hot spot densities, burn-weighted ion temperatures and pressures show a decreasing trend, while the hot spot radius shows an increasing trend in response to added heat to the cold shell. Instantaneous quantities are assessed at the time of maximum neutron production within each simulation.展开更多
We investigate the short-time decoherence of a solid-state qubit under Ohmic noise at optimal operation points. The decoherence is analyzed by maximum norm of the deviation density operator. It is shown that at the te...We investigate the short-time decoherence of a solid-state qubit under Ohmic noise at optimal operation points. The decoherence is analyzed by maximum norm of the deviation density operator. It is shown that at the temperature T = 3 mK, the loss of the fidelity due to decoherence is much smaller than the DiVincenzo low decoherence criterion, which means that the mode/may be an optimal candidate of qubit for quantum computation.展开更多
We study the influence of the shape of compact a scalar field. We examine both the massive and the massless dimensions to the Casimir energy and Casimir force of scalar field. The total spacetime topology is M^D ×...We study the influence of the shape of compact a scalar field. We examine both the massive and the massless dimensions to the Casimir energy and Casimir force of scalar field. The total spacetime topology is M^D × Tθ2, where M^D) is the D-dimensional Minkowski spacetime and Tθ2 the twisted torus described by R1, R2, and 8. For the case R1 = R2 we found that the massive bulk scalar field Casimir energy is singular for D=even and this singularity is R-dependent and remains even when the force is calculated. Also the massless Casimir energy and force is regular only for D = 4 (!). This is very interesting phenomenologically. We examine the energy and force as a function of 8. Also we address the stabilization problem of the compact space. We also briefly discuss some phenomenological implications.展开更多
Bromine-based flow batteries(Br-FBs)are well suitable for stationary energy storage owing to their high energy density and low cost.However,their power density and lifespan are limited by relatively low reaction kinet...Bromine-based flow batteries(Br-FBs)are well suitable for stationary energy storage owing to their high energy density and low cost.However,their power density and lifespan are limited by relatively low reaction kinetics of Br_(2)/Br-couple and serious self-discharge caused by bromine migration.Herein,lamella-like porous carbon nitride nanosheets(PCNS)with adsorption and spatial confinement effects are used to modify cathodes for Br-FBs.The large specific surface area and plentiful N-containing groups enable PCNS with excellent adsorption capacity,which captures bromine species into the pores on PCNS layers.The captured bromine species is subsequently confined in PCNS interlayers due to the strong interaction between bromine species and N-containing groups,thus effectively depressing bromine diffusion/migration.Moreover,the strong bromine adsorption capacity significantly improves the electrochemical activity of PCNS.Consequently,a zinc-bromine flow battery(ZBFB)employing PCNS-modified cathode achieves a high current density of 180 m A cm^(-2),with an ultra-high coulombic efficiency of 99.22%.It also exhibits better self-discharge performance and a long cycle life of 500 cycles.Furthermore,a complexing agent-free ZBFB is successfully realized based on the superior bromineentrapping/retaining capacity of the PCNS-modified cathode.Consequently,this work provides a promising strategy toward electrode modifications for high-performance and long-lifespan Br-FBs.展开更多
The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to...The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to bleed hole diameter and the ratio of bleed hole depth to diameter is investigated by numerical simulations under choking and non-choking conditions.The results show that the subsonic leading edge of the circular hole and the subsonic part of the boundary layer are the main factors causing lateral flow of the bleed hole.The effect of diameter on bleed mass flow rate is due to the viscous effect which reduces the effective diameter.The larger the ratio of displacement thickness to bleed hole diameter,the more obvious the viscous effect is.The depth affects bleed flow rate by changing the opening and closing states of the separation zone.When a certain depth is reached,the development of the boundary layer reduces the effective captured stream tube and thus reduces the bleed mass flow rate.The main objective of the study is to obtain the physical mechanism of the bleed hole size parameters affecting the bleed mass flow rate,and to provide theoretical guidance for the selection of the size of bleed holes in the design of a porous arrays bleed system in hypersonic inlets.展开更多
Various random models with balanced data that are relevant for analyzing practical test data are described, along with several hypothesis testing and interval estimation problems concerning variance components. In thi...Various random models with balanced data that are relevant for analyzing practical test data are described, along with several hypothesis testing and interval estimation problems concerning variance components. In this paper, we mainly consider these problems in general random effect model with balanced data. Exact tests and confidence intervals for a single variance component corresponding to random effect are developed by using generalized p-values and generalized confidence intervals. The resulting procedures are easy to compute and are applicable to small samples. Exact tests and confidence intervals are also established for comparing the random-effects variance components and the sum of random-effects variance components in two independent general random effect models with balanced data. Furthermore, we investigate the statistical properties of the resulting tests. Finally, some simulation results on the type Ⅰ error probability and power of the proposed test are reported. The simulation results indicate that exact test is extremely satisfactory for controlling type Ⅰ error probability.展开更多
This article reviews the up-to-date progress in mechanocaloric effect and materials near ambient temperature. For elastocaloric materials, we focus on directly measured temperature change and its entropy origin in non...This article reviews the up-to-date progress in mechanocaloric effect and materials near ambient temperature. For elastocaloric materials, we focus on directly measured temperature change and its entropy origin in nonmagnetic and magnetic shape memory alloys. In terms of barocaloric materials, change in magnetic state, volume and shift of transition temperature due to hydrostatic pressure are systematically compared. We propose advantages and challenges of elastocaloric materials for solidstate cooling. Strategies to enhance elastocaloric and mechanical stability under long-term mechanical cycles are presented. Finally, we conclude with an outlook on the prospect of elastocaloric cooling application.展开更多
Topological insulators (TIs) are a new state of quantum matter with a band gap in bulk and conducting surface states. In this work, the Raman spectra of topological insulator Bi2Te3 films prepared by molecular beam ...Topological insulators (TIs) are a new state of quantum matter with a band gap in bulk and conducting surface states. In this work, the Raman spectra of topological insulator Bi2Te3 films prepared by molecular beam epitaxy (MBE) have been measured by an in situ ultrahigh vacuum (UHV)-MBE-Raman spectroscopy system. When the thickness of Bi2Te3 films decreases from 40 quintuple-layers (QL) to 1 QL, the spectral characteristics of some Raman modes appearing in bulk Bi2Te3 vary and a new vibrational mode appears, which has not been reported in previous studies and might be related to quantum size effects and symmetry breaking. In addition, an obvious change was observed at 3 QL when a Dirac cone formed. These results offer some new information about the novel quantum states of TIs.展开更多
Intrinsic viscosity is one of the most fundamental properties of dilute polymer solutions; its study forms an integral part of the cornerstone of the modern macromolecular theory. However, a general theory applicable ...Intrinsic viscosity is one of the most fundamental properties of dilute polymer solutions; its study forms an integral part of the cornerstone of the modern macromolecular theory. However, a general theory applicable to any chain architectures and solvent conditions has remained elusive, due to the formidable challenges in the theoretical treatment of the long-range, many-body and accumulative hydrodynamic effects. Recently, Lijia An and coworkers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, has developed a new approach that largely overcomes these challenges. Their new theory provides a simple and unified theoretical framework for describing the intrinsic viscosity of polymers with arbitrary architectures under any solvent conditions and forms the theoretical basis for inferring the polymer chain structure from intrinsic viscosity measurements. Comparisons with existing experimental data yield extensive, quantitative agreement.展开更多
文摘A compact drain current including the variation of barrier heights and carrier quantization in ultrathin-body and double-gate Schottky barrier MOSFETs (UTBDG SBFETs) is developed. In this model, Schrodinger's equation is solved using the triangular potential well approximation. The carrier density thus obtained is included in the space charge density to obtain quantum carrier confinement effects in the modeling of thin-body devices. Due to the quantum effects, the first subband is higher than the conduction band edge, which is equivalent to the band gap widening. Thus, the barrier heights at the source and drain increase and the carrier concentration decreases as the drain current decreases. The drawback of the existing models,which cannot present an accurate prediction of the drain current because they mainly consider the effects of Schottky barrier lowering (SBL) due to image forces,is eliminated. Our research results suggest that for small nonnegative Schottky barrier (SB) heights,even for zero barrier height, the tunneling current also plays a role in the total on-state currents. Verification of the present model was carried out by the device numerical simulator-Silvaco and showed good agreement.
文摘Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. We observed the effects of different ligands on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes. We tried to investigate chemical effects on central atoms using the behaviors of different ligands in these complexes. The experimental values of Kβ/Kα were compared with the theoretical and other experimental values of pure Co, Ni, Cu, and Zn.
基金supported by the National Nature Science Foundation of China(No.41474112)the National Science and Technology Major Project(No.2017ZX05005-004)
文摘Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of different methods are analyzed through standard sample experiment and the seismic physical modelling. Based on this, we proposed an improved method for improving accuracy of pulse transmission method, in which the samples with similar acoustic properties to the test sample are selected as the reference samples. We assess the stability and accuracy of the pulse transmission, pulse transmission insertion, and reflection wave methods for obtaining the quality factor Q using standard and reference samples and seismic physical modeling. The results suggest that the Q-values obtained by the pulse transmission method are strongly affected by diffraction and the error is 50% or greater, whereas the relative error of the improved pulse transmission method is about 10%. By using a theoretical diffraction correction method and the improved measurement method, the differences among the Q-measuring methods can be limited to within 10%.
基金Supported by the National Natural Science Foundation of China(No.29876022).
文摘The effect of graft yield on both the thermo-responsive hydraulicpermeability and the therrno-responsive diffusional permeability through porous membranes withplasma-grafted poly(N-isopropylacrylamide) (PNIPAM) gates was investigated. Both thermo-responsiveflat membranes and core-shell microcapsule membranes with a wide range of graft yield of PNIPAM wereprepared using a plasma-graft pore-filling polymerization method. The grafted PNIPAM was formedhomogeneously throughout the entire thickness of both the flat polyethylene membranes and themicrocapsule polyamide membranes. Both the hydraulic permeability and the diffusional permeabilitywere heavily dependent on the PNIPAM graft yield. With increasing the graft yield, the hydraulicpermeability (water flux) decreases rapidly at 25℃ because of the decrease of the pore size;however, the water flux at 40℃ increases firstly to a peak because of the increase ofhydrophobicity of the pore surface, and then decreases and finally tends to zero because of the poresize becoming smaller and smaller. For the diffusional permeability, the temperature showsdifferent effects on the diffusional permeability coefficients of solutes across the membranes. Whenthe graft yield was low, the diffusional coefficient of solute across the membrane was higher attemperature above the lower critical solution temperature (LCST) than that below the LCST; however,when the graft yield was high, the diffusional coefficient was lower at temperature above the LCSTthan that below the LCST. It is very important to choose or design a proper graft yield of PNIPAMfor obtaining a desired thermo-responsive 'on/off' hydraulic or diffusional permeability.
文摘The semi-classical black hole tunneling radiation (Parikh-Wilczek tunneling proposal) is calculated undera minimal length uncertainty analysis.It is shown that,the generalized second law of thermodynamics may bound thetunneling probability radiation of a Reissner-Nordstrom black hole radiation.
基金The National Natural Science Foundation of China(No.61762004,61762005)the National Key Research and Development Program(No.2018YFB1702700)+1 种基金the Science and Technology Project Founded by the Education Department of Jiangxi Province,China(No.GJJ200702,GJJ200746)the Open Fund Project of Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology(No.JETRCNGDSS201901,JELRGBDT202001,JELRGBDT202003).
文摘To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used to construct a reference image by blurring a given image.Gradient similarity is included to obtain the gradient distortion measurement map,which can finely reflect the smallest possible changes in textures and details.Second,a saliency model is utilized to calculate image saliency.Specifically,an adaptive method is used to calculate the specific salient threshold of the blurred image,and the blurred image is binarized to yield the salient region map.Block-wise visual saliency serves as the weight to obtain the final image quality.Experimental results based on the image and video engineering database,categorial image quality database,and camera image database demonstrate that the proposed method correlates well with human judgment.Its computational complexity is also relatively low.
基金The project supported by National Natural Science Foundation of China under Grant No. 2006CB921605
文摘With the help of the elastic wave theory in the perturbed approximation the density-of-states for vibrational modes and the specific heat are studied for different hollow Si nanospheres, coupled with a semi-infinite substrate. We find that the modes of such coupled hollow spheres are significantly broadened and shifted toward low frequencies. The specific heat of the coupled hollow nanosphere is bigger than an isolated one due to the coupling interaction and quantum size effects. The predicted coupling and size enhancements on specific heat are probed in thermal experiments.
文摘We determine the dependence of key inertial confinement fusion (ICF) hot spot properties on the deuterium-tritium (DT) fuel adiabat accomplished by addition of heat to the cold shell. Our main result is to observe that variation of this parameter reduces the simulation to experiment discrepancy in several experimentally inferred quantities. Simulations are continued from capsule only l D simulations using the Lawrence Livermore National Laboratory ICF code, HYDRA. The continuations employ the high energy density physics (HEDP) University of Chicago code, FLASH, and a hydro only code, FronTier, modified with a radiation equation of state (EOS) model. Hot spot densities, burn-weighted ion temperatures and pressures show a decreasing trend, while the hot spot radius shows an increasing trend in response to added heat to the cold shell. Instantaneous quantities are assessed at the time of maximum neutron production within each simulation.
文摘We investigate the short-time decoherence of a solid-state qubit under Ohmic noise at optimal operation points. The decoherence is analyzed by maximum norm of the deviation density operator. It is shown that at the temperature T = 3 mK, the loss of the fidelity due to decoherence is much smaller than the DiVincenzo low decoherence criterion, which means that the mode/may be an optimal candidate of qubit for quantum computation.
文摘We study the influence of the shape of compact a scalar field. We examine both the massive and the massless dimensions to the Casimir energy and Casimir force of scalar field. The total spacetime topology is M^D × Tθ2, where M^D) is the D-dimensional Minkowski spacetime and Tθ2 the twisted torus described by R1, R2, and 8. For the case R1 = R2 we found that the massive bulk scalar field Casimir energy is singular for D=even and this singularity is R-dependent and remains even when the force is calculated. Also the massless Casimir energy and force is regular only for D = 4 (!). This is very interesting phenomenologically. We examine the energy and force as a function of 8. Also we address the stabilization problem of the compact space. We also briefly discuss some phenomenological implications.
基金supported by CAS Strategic Leading Science&Technology Program(A)(XDA21070100)CAS Engineering Laboratory for Electrochemical Energy Storage(KFJ-PTXM-027)+1 种基金DICP funding(DICP I202026 DICP I201928)Liaoning Natural Science Foundation(2021-MS-024)。
文摘Bromine-based flow batteries(Br-FBs)are well suitable for stationary energy storage owing to their high energy density and low cost.However,their power density and lifespan are limited by relatively low reaction kinetics of Br_(2)/Br-couple and serious self-discharge caused by bromine migration.Herein,lamella-like porous carbon nitride nanosheets(PCNS)with adsorption and spatial confinement effects are used to modify cathodes for Br-FBs.The large specific surface area and plentiful N-containing groups enable PCNS with excellent adsorption capacity,which captures bromine species into the pores on PCNS layers.The captured bromine species is subsequently confined in PCNS interlayers due to the strong interaction between bromine species and N-containing groups,thus effectively depressing bromine diffusion/migration.Moreover,the strong bromine adsorption capacity significantly improves the electrochemical activity of PCNS.Consequently,a zinc-bromine flow battery(ZBFB)employing PCNS-modified cathode achieves a high current density of 180 m A cm^(-2),with an ultra-high coulombic efficiency of 99.22%.It also exhibits better self-discharge performance and a long cycle life of 500 cycles.Furthermore,a complexing agent-free ZBFB is successfully realized based on the superior bromineentrapping/retaining capacity of the PCNS-modified cathode.Consequently,this work provides a promising strategy toward electrode modifications for high-performance and long-lifespan Br-FBs.
基金supported by the National Natural Science Foundation of China(No.11472304)the Graduate Innovation Grant of Hunan Province(No.CX2017B006),China。
文摘The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to bleed hole diameter and the ratio of bleed hole depth to diameter is investigated by numerical simulations under choking and non-choking conditions.The results show that the subsonic leading edge of the circular hole and the subsonic part of the boundary layer are the main factors causing lateral flow of the bleed hole.The effect of diameter on bleed mass flow rate is due to the viscous effect which reduces the effective diameter.The larger the ratio of displacement thickness to bleed hole diameter,the more obvious the viscous effect is.The depth affects bleed flow rate by changing the opening and closing states of the separation zone.When a certain depth is reached,the development of the boundary layer reduces the effective captured stream tube and thus reduces the bleed mass flow rate.The main objective of the study is to obtain the physical mechanism of the bleed hole size parameters affecting the bleed mass flow rate,and to provide theoretical guidance for the selection of the size of bleed holes in the design of a porous arrays bleed system in hypersonic inlets.
文摘Various random models with balanced data that are relevant for analyzing practical test data are described, along with several hypothesis testing and interval estimation problems concerning variance components. In this paper, we mainly consider these problems in general random effect model with balanced data. Exact tests and confidence intervals for a single variance component corresponding to random effect are developed by using generalized p-values and generalized confidence intervals. The resulting procedures are easy to compute and are applicable to small samples. Exact tests and confidence intervals are also established for comparing the random-effects variance components and the sum of random-effects variance components in two independent general random effect models with balanced data. Furthermore, we investigate the statistical properties of the resulting tests. Finally, some simulation results on the type Ⅰ error probability and power of the proposed test are reported. The simulation results indicate that exact test is extremely satisfactory for controlling type Ⅰ error probability.
基金supported by the National Natural Science Foundation of China(51371184)Zhejiang Provincial Natural Science Foundation(LR14E010001)
文摘This article reviews the up-to-date progress in mechanocaloric effect and materials near ambient temperature. For elastocaloric materials, we focus on directly measured temperature change and its entropy origin in nonmagnetic and magnetic shape memory alloys. In terms of barocaloric materials, change in magnetic state, volume and shift of transition temperature due to hydrostatic pressure are systematically compared. We propose advantages and challenges of elastocaloric materials for solidstate cooling. Strategies to enhance elastocaloric and mechanical stability under long-term mechanical cycles are presented. Finally, we conclude with an outlook on the prospect of elastocaloric cooling application.
文摘Topological insulators (TIs) are a new state of quantum matter with a band gap in bulk and conducting surface states. In this work, the Raman spectra of topological insulator Bi2Te3 films prepared by molecular beam epitaxy (MBE) have been measured by an in situ ultrahigh vacuum (UHV)-MBE-Raman spectroscopy system. When the thickness of Bi2Te3 films decreases from 40 quintuple-layers (QL) to 1 QL, the spectral characteristics of some Raman modes appearing in bulk Bi2Te3 vary and a new vibrational mode appears, which has not been reported in previous studies and might be related to quantum size effects and symmetry breaking. In addition, an obvious change was observed at 3 QL when a Dirac cone formed. These results offer some new information about the novel quantum states of TIs.
文摘Intrinsic viscosity is one of the most fundamental properties of dilute polymer solutions; its study forms an integral part of the cornerstone of the modern macromolecular theory. However, a general theory applicable to any chain architectures and solvent conditions has remained elusive, due to the formidable challenges in the theoretical treatment of the long-range, many-body and accumulative hydrodynamic effects. Recently, Lijia An and coworkers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, has developed a new approach that largely overcomes these challenges. Their new theory provides a simple and unified theoretical framework for describing the intrinsic viscosity of polymers with arbitrary architectures under any solvent conditions and forms the theoretical basis for inferring the polymer chain structure from intrinsic viscosity measurements. Comparisons with existing experimental data yield extensive, quantitative agreement.