Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefo...Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefollowing four land use patterns: masson pine (Pznvs massonzana Lamb.) land, beautiful sweetgum (Ltq-uidambar fomosana Hance) land, vegetation reservation land, and artificial mowing land. The annualbiomass production of the masson pine land was 5060 kg ha ̄-1 being 4.9, 2.1, and 6.0 times that of the beau-tiful sweetgum land, the vegetation reservation land, and the artificial mowing land, respectively. Comparedwith the background values, the number of plant species for the vegetation reservation land increased by 10species after 10 years of land utilization, while for the masson pine and the beautiful sweetgum decreased by4, and for the artificial mowing land by 9. For masson pine land, total amount of N, P, K, Ca, and Mg neededfor producing 1000 kg dry matter was only 3.5 kg, annual element return through litter was 22 kg ha ̄-1, bothof which were much lower than those of the other patterns. Vegetation reservation was an effective measureto conserve soil and water and improve soil fertility in the red soil hilly region. Artificial mowing arousedserious degradation of vegetation and soil. Some measures and suggestions for management and exploitationof the red soil hilly region such as masson pine planting, closing hills for afforestation, and stereo-agricultureon one hill are proposed.展开更多
The process of tensile test at different temperatures and strain rates was used to study the characteristics of serrated flow, i.e., Portevin-Le Chatelier effect (PLC), in NZ31 Mg alloy. The PLC effect in the tensile ...The process of tensile test at different temperatures and strain rates was used to study the characteristics of serrated flow, i.e., Portevin-Le Chatelier effect (PLC), in NZ31 Mg alloy. The PLC effect in the tensile stress?strain curves was observed at the temperature range of 150?250 °C. Serrated flow during the deformation at 250 °C is prominent, and a lot of slip bands with a specific direction in each grain can be observed in the microstructure. The serration changes from type A to type C with the increase of temperature and the decrease of strain rate. One single serration of type A was described specifically by the processes of partial pinning, absolute pinning and unpinning. The enhancement of pinning ability at high temperature and low strain rate can promote the absolute pinning process and restrain the unpinning process, which explains the serration type transition.展开更多
This study investigated the difference in the levels of people's acceptance of robots by the types of social relationships between humans and robots. In this study, social relationships between a robot and a person w...This study investigated the difference in the levels of people's acceptance of robots by the types of social relationships between humans and robots. In this study, social relationships between a robot and a person were categorized into four types consisted of two in the horizontal of social relationship (intimacy dimension) and two in the vertical of social relationship (status dimension). In dialogue between humans and robots, the types of social relationship were adjusted by forms of language such as calling by name and speech styles. People's acceptance of robots was measured by people's comfortable approach distance to the robot. Participants showed greater acceptance of a robot when the robot called them by their names. In the case of speech style, participants accepted the robot which used honorific speech style without addressing them by their name, while they accepted the robot which used familiar speech style with addressing them by their name. There was an interaction effect between gender and calling by name.展开更多
Objectively, a complex interactive coercing relationship exists between urbanization and eco-environment, and the research of this relationship is primarily divided into three schools, i.e., interactive coercion theor...Objectively, a complex interactive coercing relationship exists between urbanization and eco-environment, and the research of this relationship is primarily divided into three schools, i.e., interactive coercion theory, interactive promotion theory and coupling symbiosis theory. Harmonizing the relationship between urbanization and eco-environment is not only an important proposition for the national development plan but also the only way to promote healthy urbanization. Based on an analysis of urbanization process and its relationship with the eco-environment, this article analyzes interactive coercing effects between urbanization and eco-environment from three perspectives of population urbanization, economic urbanization and spatial urbanization, respectively, and analyzes risk effects of the interactive coercion. Further, it shows six basic laws followed by interactive coercion between urbanization and eco-environment, namely, coupling fission law, dynamic hierarchy law, stochastic fluctuation law, non-linear synergetic law, threshold value law and forewarning law, and divides the interactive coercing process into five stages, namely, low-level coordinate, antagonistic, break-in, ameliorative and high-grade coordinate. Based on the geometric derivation, the interactive coercing relationship between urbanization and eco-environment is judged to be non-linear and it can be explained by a double-exponential function formed by the combination of power and exponential functions. Then, the evolutionary types of the interactive coercing relationship are divided into nine ones: rudimentary coordinating, ecology-dominated, synchronal coordinating, urbanization lagging, stepwise break-in, exorbitant urbanization, fragile ecology, rudimentary break-in and unsustainable types. Finally, based on an interactive coercion model, the degree of interactive coercion can be examined, and then, an evolutionary cycle can be divided into four phases, namely rudimentary symbiosis, harmonious development, utmost increasing and spiral type rising. The study results offer a scientific decision-making of healthy urbanization for achieving the goal of eco-environment protection and promoting urbanization.展开更多
Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configurat...Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.展开更多
文摘Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefollowing four land use patterns: masson pine (Pznvs massonzana Lamb.) land, beautiful sweetgum (Ltq-uidambar fomosana Hance) land, vegetation reservation land, and artificial mowing land. The annualbiomass production of the masson pine land was 5060 kg ha ̄-1 being 4.9, 2.1, and 6.0 times that of the beau-tiful sweetgum land, the vegetation reservation land, and the artificial mowing land, respectively. Comparedwith the background values, the number of plant species for the vegetation reservation land increased by 10species after 10 years of land utilization, while for the masson pine and the beautiful sweetgum decreased by4, and for the artificial mowing land by 9. For masson pine land, total amount of N, P, K, Ca, and Mg neededfor producing 1000 kg dry matter was only 3.5 kg, annual element return through litter was 22 kg ha ̄-1, bothof which were much lower than those of the other patterns. Vegetation reservation was an effective measureto conserve soil and water and improve soil fertility in the red soil hilly region. Artificial mowing arousedserious degradation of vegetation and soil. Some measures and suggestions for management and exploitationof the red soil hilly region such as masson pine planting, closing hills for afforestation, and stereo-agricultureon one hill are proposed.
基金Project(2013CB632202)supported by the National Basic Research Program of ChinaProject(51301173)supported by the National Natural Science Foundation of China
文摘The process of tensile test at different temperatures and strain rates was used to study the characteristics of serrated flow, i.e., Portevin-Le Chatelier effect (PLC), in NZ31 Mg alloy. The PLC effect in the tensile stress?strain curves was observed at the temperature range of 150?250 °C. Serrated flow during the deformation at 250 °C is prominent, and a lot of slip bands with a specific direction in each grain can be observed in the microstructure. The serration changes from type A to type C with the increase of temperature and the decrease of strain rate. One single serration of type A was described specifically by the processes of partial pinning, absolute pinning and unpinning. The enhancement of pinning ability at high temperature and low strain rate can promote the absolute pinning process and restrain the unpinning process, which explains the serration type transition.
文摘This study investigated the difference in the levels of people's acceptance of robots by the types of social relationships between humans and robots. In this study, social relationships between a robot and a person were categorized into four types consisted of two in the horizontal of social relationship (intimacy dimension) and two in the vertical of social relationship (status dimension). In dialogue between humans and robots, the types of social relationship were adjusted by forms of language such as calling by name and speech styles. People's acceptance of robots was measured by people's comfortable approach distance to the robot. Participants showed greater acceptance of a robot when the robot called them by their names. In the case of speech style, participants accepted the robot which used honorific speech style without addressing them by their name, while they accepted the robot which used familiar speech style with addressing them by their name. There was an interaction effect between gender and calling by name.
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40335049),National Natural Science Foundation of China (No. 40971101)
文摘Objectively, a complex interactive coercing relationship exists between urbanization and eco-environment, and the research of this relationship is primarily divided into three schools, i.e., interactive coercion theory, interactive promotion theory and coupling symbiosis theory. Harmonizing the relationship between urbanization and eco-environment is not only an important proposition for the national development plan but also the only way to promote healthy urbanization. Based on an analysis of urbanization process and its relationship with the eco-environment, this article analyzes interactive coercing effects between urbanization and eco-environment from three perspectives of population urbanization, economic urbanization and spatial urbanization, respectively, and analyzes risk effects of the interactive coercion. Further, it shows six basic laws followed by interactive coercion between urbanization and eco-environment, namely, coupling fission law, dynamic hierarchy law, stochastic fluctuation law, non-linear synergetic law, threshold value law and forewarning law, and divides the interactive coercing process into five stages, namely, low-level coordinate, antagonistic, break-in, ameliorative and high-grade coordinate. Based on the geometric derivation, the interactive coercing relationship between urbanization and eco-environment is judged to be non-linear and it can be explained by a double-exponential function formed by the combination of power and exponential functions. Then, the evolutionary types of the interactive coercing relationship are divided into nine ones: rudimentary coordinating, ecology-dominated, synchronal coordinating, urbanization lagging, stepwise break-in, exorbitant urbanization, fragile ecology, rudimentary break-in and unsustainable types. Finally, based on an interactive coercion model, the degree of interactive coercion can be examined, and then, an evolutionary cycle can be divided into four phases, namely rudimentary symbiosis, harmonious development, utmost increasing and spiral type rising. The study results offer a scientific decision-making of healthy urbanization for achieving the goal of eco-environment protection and promoting urbanization.
基金Project financially supported by the Second Stage of Brain Korea 21 Projects and Changwon National University,Korea
文摘Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.