Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose ...Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.展开更多
By using four specially designed narrow bandpass filters and photodetectors in the instrument, the incident and reflected radiances of sun light on the vegetation are optically sensed, at the red and near infrared ban...By using four specially designed narrow bandpass filters and photodetectors in the instrument, the incident and reflected radiances of sun light on the vegetation are optically sensed, at the red and near infrared bands, then the normalized difference vegetation index(NDVI) is processed by a microprocessor. Compared with conventional spectrometer measuring method of NDVI, the instrument is easy to be used, compact, light and low-cost.展开更多
In the paper, we propose a new method of identifying the clear sky based on the Atmospheric Emitted Radiance Interferometer (AERI). Using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AFM) dataset...In the paper, we propose a new method of identifying the clear sky based on the Atmospheric Emitted Radiance Interferometer (AERI). Using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AFM) dataset in Shouxian in 2008, we sim- ulate the downwelling radiances on the surface in the 8-12 μm window region using Line-By-Line Radiative Transfer Model (LBLRTM), and compare the results with the AERI radiances, The differences larger (smaller) than 3 mW (cm2 sr cm-1)-1 suggest a cloudy (clear) sky. Meanwhile, we develop the new algorithms for retrieving the zenith equivalent cloud base height (CBHe) and the equivalent emissivity (ee), respectively. The retrieval methods are described as follows. (1) An infinitely thin and isothermal blackbody cloud is simulated by the LBLRTM. The cloud base height (H) is adjusted iteratively to satisfy the situation that the contribution of the blackbody to the downwelling radiance is equal to that of realistic cloud. The final H is considered as CBHe. The retrieval results indicate that the differences between the CBHe and observational cloud base height (CBH) are much smaller for thick low cloud, and increase with the increasing CBH. (2) An infinitely thin and isothermal gray body cloud is simulated by the LBLRTM, with the CBH specified as the observed value. The cloud base emissivity (co) is ad- justed iteratively until the contribution of the gray body to the downwelling radiance is the same as that of realistic cloud. The corresponding εc is εe. The average εe for the low, middle, and high cloud is 0.967, 0.781, and 0.616 for the 50 cases, respec- tively. It decreases with the increasing CBH. The retrieval results will be useful for studying the role of cloud in the radiation budget in the window region and cloud parameterizations in the climate model.展开更多
The measurement of energetic particles plays an important role in the space environment monitoring and space weather forecasting.The accuracy of the energetic electron measurement is seriously influenced by the proton...The measurement of energetic particles plays an important role in the space environment monitoring and space weather forecasting.The accuracy of the energetic electron measurement is seriously influenced by the proton contamination.An anti-proton contamination design for the sensor of imaging energetic electron spectrometer is introduced in this paper.According to the electron and proton spectrum on the typical satellite orbits calculated by the radiation belt models,the efficiency of the anti-proton contamination design is estimated by the Geant4 simulation and the design is optimized based on the simulation results.展开更多
Hydrolysis and oxidation of formamidine disulfide in acidic medium were investigated using high-performance liquid chro- matography (HPLC) and mass spectrometry (MS) at 25 ~C. By controlling the slow reaction rate...Hydrolysis and oxidation of formamidine disulfide in acidic medium were investigated using high-performance liquid chro- matography (HPLC) and mass spectrometry (MS) at 25 ~C. By controlling the slow reaction rate and choosing appropriate mobile phase, HPLC provides the unique advantages over other methods (UV-Vis, chemical separation) in species tracking and kinetic study. In addition to thiourea and formamidine sulfinic acid, two unreported products were also detected in the hy- drolysis reaction. Mass spectrometry measurement indicates these two products to be formamidine sulfenic acid and thiocyan- ogen with mass weights of 92.28 and 116,36, respectively. In the oxidation of formamidine disulfide by hydrogen peroxide, besides thiourea, formamidine sulfenic acid, formamidine sulfinic acid, thiocyanogen and urea, formamidine sulfonic acid and sulfate could be detected. The oxidation reaction was found to be first order in both forrnamidine disulfide and hydrogen per- oxide. The rate constants of hydrolysis and oxidation reactions were determined in the pH range of 1.5-3.0. It was found both rate constants are increased with the increasing of pH. Experimental curves of different species can be effectively simulated via a mechanism scheme for formamidine disulfide oxidation, including hydrolysis equilibrium of formamidine disulfide and irre- versible hydrolysis of formamidine sulfenic acid.展开更多
The sunlight is the largest single available source of clean and renewable energy to ensure human society's sustainable devel- opment. Owing to their low production cost and high energy conversion efficiency, dye-sen...The sunlight is the largest single available source of clean and renewable energy to ensure human society's sustainable devel- opment. Owing to their low production cost and high energy conversion efficiency, dye-sensitized solar cells (DSSCs) have been regarded as good alternatives to conventional photovoltaic devices. Herein, a series of composite electrolytes based on poly(ethylene oxide) (PEO) and the binary ionic liquids 1-propyl-3-methy-imidazolium iodide ([PMIm]I) and l-ethyl-3- methylimidazolium thiocyanate ([EMIm][SCN]) were prepared and then applied to fabricate six DSSCs. The composite elec- trolytes were characterized by fourier transform infrared spectroscopy (FTIS), X-ray diffraction (XRD), and electrochemical impedance spectra (EIS). It was shown that the addition of binary ionic liquids would reduce the degree of crystallinity of PEO thus improving the ionic conductivities of the electrolytes by about 2 orders of magnitude. Investigation on the photovoltaic performances of these DSSCs showed that the fill factor (FF) could reach up to 0.67 and energy conversion efficiency (η) could reach up to 4.04% under AM 1.5 full sunlight (100 mW/cm^2).展开更多
基金The Special Funds for State Key Projects for Fun- damental Research (G1999022201-04).
文摘Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.
文摘By using four specially designed narrow bandpass filters and photodetectors in the instrument, the incident and reflected radiances of sun light on the vegetation are optically sensed, at the red and near infrared bands, then the normalized difference vegetation index(NDVI) is processed by a microprocessor. Compared with conventional spectrometer measuring method of NDVI, the instrument is easy to be used, compact, light and low-cost.
基金supported by the Chinese Academy of Sciences (Grant No. XDA05040300)National Natural Science Foundation of China (Grant No. 40710059003)
文摘In the paper, we propose a new method of identifying the clear sky based on the Atmospheric Emitted Radiance Interferometer (AERI). Using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AFM) dataset in Shouxian in 2008, we sim- ulate the downwelling radiances on the surface in the 8-12 μm window region using Line-By-Line Radiative Transfer Model (LBLRTM), and compare the results with the AERI radiances, The differences larger (smaller) than 3 mW (cm2 sr cm-1)-1 suggest a cloudy (clear) sky. Meanwhile, we develop the new algorithms for retrieving the zenith equivalent cloud base height (CBHe) and the equivalent emissivity (ee), respectively. The retrieval methods are described as follows. (1) An infinitely thin and isothermal blackbody cloud is simulated by the LBLRTM. The cloud base height (H) is adjusted iteratively to satisfy the situation that the contribution of the blackbody to the downwelling radiance is equal to that of realistic cloud. The final H is considered as CBHe. The retrieval results indicate that the differences between the CBHe and observational cloud base height (CBH) are much smaller for thick low cloud, and increase with the increasing CBH. (2) An infinitely thin and isothermal gray body cloud is simulated by the LBLRTM, with the CBH specified as the observed value. The cloud base emissivity (co) is ad- justed iteratively until the contribution of the gray body to the downwelling radiance is the same as that of realistic cloud. The corresponding εc is εe. The average εe for the low, middle, and high cloud is 0.967, 0.781, and 0.616 for the 50 cases, respec- tively. It decreases with the increasing CBH. The retrieval results will be useful for studying the role of cloud in the radiation budget in the window region and cloud parameterizations in the climate model.
基金supported by the National Natural Science Foundation of China(Grant Nos.41374166,41374167,41074117 and 41421003)Major Project of Chinese National Programs for Fundamental Research and Development(Grant No.2012CB825603)
文摘The measurement of energetic particles plays an important role in the space environment monitoring and space weather forecasting.The accuracy of the energetic electron measurement is seriously influenced by the proton contamination.An anti-proton contamination design for the sensor of imaging energetic electron spectrometer is introduced in this paper.According to the electron and proton spectrum on the typical satellite orbits calculated by the radiation belt models,the efficiency of the anti-proton contamination design is estimated by the Geant4 simulation and the design is optimized based on the simulation results.
基金supported by the National Natural Science Foundation of China (21073232 & 50921002)the Fundamental Research Fund from the Chinese Central University (2010LKHX02)
文摘Hydrolysis and oxidation of formamidine disulfide in acidic medium were investigated using high-performance liquid chro- matography (HPLC) and mass spectrometry (MS) at 25 ~C. By controlling the slow reaction rate and choosing appropriate mobile phase, HPLC provides the unique advantages over other methods (UV-Vis, chemical separation) in species tracking and kinetic study. In addition to thiourea and formamidine sulfinic acid, two unreported products were also detected in the hy- drolysis reaction. Mass spectrometry measurement indicates these two products to be formamidine sulfenic acid and thiocyan- ogen with mass weights of 92.28 and 116,36, respectively. In the oxidation of formamidine disulfide by hydrogen peroxide, besides thiourea, formamidine sulfenic acid, formamidine sulfinic acid, thiocyanogen and urea, formamidine sulfonic acid and sulfate could be detected. The oxidation reaction was found to be first order in both forrnamidine disulfide and hydrogen per- oxide. The rate constants of hydrolysis and oxidation reactions were determined in the pH range of 1.5-3.0. It was found both rate constants are increased with the increasing of pH. Experimental curves of different species can be effectively simulated via a mechanism scheme for formamidine disulfide oxidation, including hydrolysis equilibrium of formamidine disulfide and irre- versible hydrolysis of formamidine sulfenic acid.
基金the financial support of the National Natural Science Foundation of China (21006035, 21076085)Science and Technology Key Project of Guangdong Province (2006A10702004,S2011020001472)the Fundamental Research Funds for the Central Universities, South China University of Technology
文摘The sunlight is the largest single available source of clean and renewable energy to ensure human society's sustainable devel- opment. Owing to their low production cost and high energy conversion efficiency, dye-sensitized solar cells (DSSCs) have been regarded as good alternatives to conventional photovoltaic devices. Herein, a series of composite electrolytes based on poly(ethylene oxide) (PEO) and the binary ionic liquids 1-propyl-3-methy-imidazolium iodide ([PMIm]I) and l-ethyl-3- methylimidazolium thiocyanate ([EMIm][SCN]) were prepared and then applied to fabricate six DSSCs. The composite elec- trolytes were characterized by fourier transform infrared spectroscopy (FTIS), X-ray diffraction (XRD), and electrochemical impedance spectra (EIS). It was shown that the addition of binary ionic liquids would reduce the degree of crystallinity of PEO thus improving the ionic conductivities of the electrolytes by about 2 orders of magnitude. Investigation on the photovoltaic performances of these DSSCs showed that the fill factor (FF) could reach up to 0.67 and energy conversion efficiency (η) could reach up to 4.04% under AM 1.5 full sunlight (100 mW/cm^2).