Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mo...Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.展开更多
Several potential failure modes generally exist in rock slopes because of the existence of massive structural planes in rock masses. A system reliability analyses method for rock slopes with multiple failure modes bas...Several potential failure modes generally exist in rock slopes because of the existence of massive structural planes in rock masses. A system reliability analyses method for rock slopes with multiple failure modes based on nonlinear Barton-Bandis failure criterion is proposed. The factors of safety associated with the sliding and overturning failure modes are derived, respectively. The validity of this method is verified through a planar rock slope with an inclined slope top and tension crack. Several sensitivity analyses are adopted to study the influences of structural-plane parameters, geometric parameters, anchoring parameters and fracture morphology on the rock slopes system reliability.展开更多
基金Projects(51021004,51379141)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.
基金Project(51978666) supported by the National Natural Science Foundation of ChinaProject(2018-123-040) supported by the Guizhou Provincial Department of Transportation Foundation, ChinaProject(2019zzts009) supported by the Fundamental Research Funds for the Central Universities, China。
文摘Several potential failure modes generally exist in rock slopes because of the existence of massive structural planes in rock masses. A system reliability analyses method for rock slopes with multiple failure modes based on nonlinear Barton-Bandis failure criterion is proposed. The factors of safety associated with the sliding and overturning failure modes are derived, respectively. The validity of this method is verified through a planar rock slope with an inclined slope top and tension crack. Several sensitivity analyses are adopted to study the influences of structural-plane parameters, geometric parameters, anchoring parameters and fracture morphology on the rock slopes system reliability.