Methods for improving the high current performance of static induction transistor (SIT) are presented.Many important factors,such as "trans-conductance per unit channel width" θ, "gate efficiency" η, "sensiti...Methods for improving the high current performance of static induction transistor (SIT) are presented.Many important factors,such as "trans-conductance per unit channel width" θ, "gate efficiency" η, "sensitivity factor" D,and "intrinsic static gain" μ0,that may be used to describe different aspects of the electrical performance of an SIT are first defined.The dependences of electrical parameters on the structure and technological process of an SIT are revealed for the first time.The packaging technologies are so important for the improvement of high power performance of SITs that they must be paid attention.Testing techniques and circuits for measuring frequency and power parameters of SITs are designed and constructed.The influence of packaging processes in technological practice on the electrical performance of SITs is also discussed in depth.展开更多
Based on the Overlapped Multiplexing Principle[12],a frequency domain OVFDM(Overlapped Frequency Domain Multiplexing) Coding is proposed.By the data weighted shift overlapped version of any band-limited Multiplexing T...Based on the Overlapped Multiplexing Principle[12],a frequency domain OVFDM(Overlapped Frequency Domain Multiplexing) Coding is proposed.By the data weighted shift overlapped version of any band-limited Multiplexing Transfer Function H(f) the coding gain and spectral efficiency are both achieved.The heavier the overlap of the data weighted Multiplexing Transfer Function H(f),the higher the coding gain and spectral efficiency as well as the closer the output to the optimum complex Gaussian distribution.The bit error probability performance is estimated.The time domain OVTDM(Overlapped Time Domain Multiplexing) Coding,the dual of OVFDM in time domain is incidentally proposed as well.Both theoretical analysis and testified simulations show that OVFDM(OVTDM) is suitable for high spectral efficiency application and its spectral efficiency is only roughly linear to SNR rather than the well-known logarithm to SNR.展开更多
The Chinese soft-shelled turtle Pelodiscus sinensis is a high-valued freshwater species cultured in China.This study investigated the effects of stocking density on water quality,growth performance and economic return...The Chinese soft-shelled turtle Pelodiscus sinensis is a high-valued freshwater species cultured in China.This study investigated the effects of stocking density on water quality,growth performance and economic return of Pelodiscus sinensis cultured in ponds.P.sinensis were stocked at densities of 1 ind./m^2(LD:low stocking density) and 2 ind./m^2(HD:high stocking density) in 3 000-m^2 ponds,with three replicate ponds for each density.P.sinensis juveniles were fed with a commercial dry pellet feed of 46% crude protein and minced fillet of silver carp ans cultured for 122 days.The results showed that the levels of total nitrogen(TN),total phosphorous(TP),Chlorophyll-a(Chl.a) and turbidity in LD treatment were significantly lower than those in HD treatment(P<0.05).The mean TN and TP concentration in LD treatment was 29.3% and 35.7% lower compared to the HD treatment at the end of the experiment,respectively.Mean survival rates,final weight,average growth rates and PER were significantly higher in LD treatment compared with the HD treatment(P<0.05),respectively.Production was significantly affected by stocking density,which was higher in HD treatment,but the net income was higher in LD treatment.The results suggest that turtles with mean weight 55.6 g rearing at a low stocking density(1 ind./m^2) in ponds had a positive effect on overall economic return and was effective at improving turtle growth performance and water quality.展开更多
The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal ...The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.展开更多
A high-speed comer detection algorithm based on fuzzy ID3 decision tree was proposed. In the algorithm, the Bresenham circle with 3-pixel radius was used as the test mask, overlapping the candidate comers with the nuc...A high-speed comer detection algorithm based on fuzzy ID3 decision tree was proposed. In the algorithm, the Bresenham circle with 3-pixel radius was used as the test mask, overlapping the candidate comers with the nucleus. Connected pixels on the circle were applied to compare the intensity value with the nucleus, with the membership function used to give the fuzzy result. The pixel with maximum information gain was chosen as the parent node to build a binary decision tree. Thus, the comer detector was derived. The pictures taken in Fengtai Railway Station in Beijing were used to test the method. The experimental results show that when the number of pixels on the test mask is chosen to be 9, best result can be obtained. The comer detector significantly outperforms existing detector in computational efficiency without sacrificing the quality and the method also provides high performance against Poisson noise and Gaussian blur.展开更多
In this paper,a 2-mm long on-chip dipole antenna pair on silicon substrate is simulated to investigate the transmission characteristics.A novel technique is proposed by employing a 0.35-mm thick diamond layer between ...In this paper,a 2-mm long on-chip dipole antenna pair on silicon substrate is simulated to investigate the transmission characteristics.A novel technique is proposed by employing a 0.35-mm thick diamond layer between silicon substrate and heat sink to improve antenna performance.The simulated transmission gain of this antenna pair with 1 mm separation on a 10-Ω cm silicon substrate increases by 9 dB at 20 GHz.A modified plane wave model involving diamond layer is also presented to explain gain improvement.Effects of dielectric variety,diamond thickness,substrate resistivity and antenna pair separation on transmission gain have been studied.The results indicate that thinner diamond layer along with high resistivity substrate is preferred.Our method makes integrated dipole antennas well suitable for intra-chip wireless interconnection which is known as a future solution to replace critical wiring interconnection.展开更多
文摘Methods for improving the high current performance of static induction transistor (SIT) are presented.Many important factors,such as "trans-conductance per unit channel width" θ, "gate efficiency" η, "sensitivity factor" D,and "intrinsic static gain" μ0,that may be used to describe different aspects of the electrical performance of an SIT are first defined.The dependences of electrical parameters on the structure and technological process of an SIT are revealed for the first time.The packaging technologies are so important for the improvement of high power performance of SITs that they must be paid attention.Testing techniques and circuits for measuring frequency and power parameters of SITs are designed and constructed.The influence of packaging processes in technological practice on the electrical performance of SITs is also discussed in depth.
基金The NNSF(National Nature Science Foundation)of China for their continuously long term support by key projects
文摘Based on the Overlapped Multiplexing Principle[12],a frequency domain OVFDM(Overlapped Frequency Domain Multiplexing) Coding is proposed.By the data weighted shift overlapped version of any band-limited Multiplexing Transfer Function H(f) the coding gain and spectral efficiency are both achieved.The heavier the overlap of the data weighted Multiplexing Transfer Function H(f),the higher the coding gain and spectral efficiency as well as the closer the output to the optimum complex Gaussian distribution.The bit error probability performance is estimated.The time domain OVTDM(Overlapped Time Domain Multiplexing) Coding,the dual of OVFDM in time domain is incidentally proposed as well.Both theoretical analysis and testified simulations show that OVFDM(OVTDM) is suitable for high spectral efficiency application and its spectral efficiency is only roughly linear to SNR rather than the well-known logarithm to SNR.
基金Supported by a grant from the National Scientific and Technological Supporting Program of China(No.2012BAD27B02-6)the Opening Foundation of the Jiangsu Engineering Laboratory for Characteristic Aquatic Species Breeding(No.CASB1306)the Knowledge Innovation Project of the Chinese Academy of Sciences(KSCX2-YW-N-47-06)
文摘The Chinese soft-shelled turtle Pelodiscus sinensis is a high-valued freshwater species cultured in China.This study investigated the effects of stocking density on water quality,growth performance and economic return of Pelodiscus sinensis cultured in ponds.P.sinensis were stocked at densities of 1 ind./m^2(LD:low stocking density) and 2 ind./m^2(HD:high stocking density) in 3 000-m^2 ponds,with three replicate ponds for each density.P.sinensis juveniles were fed with a commercial dry pellet feed of 46% crude protein and minced fillet of silver carp ans cultured for 122 days.The results showed that the levels of total nitrogen(TN),total phosphorous(TP),Chlorophyll-a(Chl.a) and turbidity in LD treatment were significantly lower than those in HD treatment(P<0.05).The mean TN and TP concentration in LD treatment was 29.3% and 35.7% lower compared to the HD treatment at the end of the experiment,respectively.Mean survival rates,final weight,average growth rates and PER were significantly higher in LD treatment compared with the HD treatment(P<0.05),respectively.Production was significantly affected by stocking density,which was higher in HD treatment,but the net income was higher in LD treatment.The results suggest that turtles with mean weight 55.6 g rearing at a low stocking density(1 ind./m^2) in ponds had a positive effect on overall economic return and was effective at improving turtle growth performance and water quality.
文摘The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.
基金Project(J2008X011) supported by the Natural Science Foundation of Ministry of Railway and Tsinghua University,China
文摘A high-speed comer detection algorithm based on fuzzy ID3 decision tree was proposed. In the algorithm, the Bresenham circle with 3-pixel radius was used as the test mask, overlapping the candidate comers with the nucleus. Connected pixels on the circle were applied to compare the intensity value with the nucleus, with the membership function used to give the fuzzy result. The pixel with maximum information gain was chosen as the parent node to build a binary decision tree. Thus, the comer detector was derived. The pictures taken in Fengtai Railway Station in Beijing were used to test the method. The experimental results show that when the number of pixels on the test mask is chosen to be 9, best result can be obtained. The comer detector significantly outperforms existing detector in computational efficiency without sacrificing the quality and the method also provides high performance against Poisson noise and Gaussian blur.
基金supported by the National High Technology Research and Development Program of China (Grant Nos. 2009AA01Z124 and 2009AA01Z102)the National Natural Science Foundation of China (Grant No. 60873212)
文摘In this paper,a 2-mm long on-chip dipole antenna pair on silicon substrate is simulated to investigate the transmission characteristics.A novel technique is proposed by employing a 0.35-mm thick diamond layer between silicon substrate and heat sink to improve antenna performance.The simulated transmission gain of this antenna pair with 1 mm separation on a 10-Ω cm silicon substrate increases by 9 dB at 20 GHz.A modified plane wave model involving diamond layer is also presented to explain gain improvement.Effects of dielectric variety,diamond thickness,substrate resistivity and antenna pair separation on transmission gain have been studied.The results indicate that thinner diamond layer along with high resistivity substrate is preferred.Our method makes integrated dipole antennas well suitable for intra-chip wireless interconnection which is known as a future solution to replace critical wiring interconnection.