In order to achieve higher spectral efficiency, mode division multiplexing (MDM) in few-mode fibers is a new research area. The idea faces lots of technical issues including intermodal delay and mode coupling which li...In order to achieve higher spectral efficiency, mode division multiplexing (MDM) in few-mode fibers is a new research area. The idea faces lots of technical issues including intermodal delay and mode coupling which limit the achievable length of the system. This paper is designated to complete the analysis of intermodal delay in step-index few-mode fibers. We analyze numerically all the parameters of fiber, which could impact intermodal delay in few-mode fibers and identify the conditions which can increase the number of multiplex modes without significant increase in maximum intermodal delay.展开更多
基金supported by the National Basic Research Program of China (No.2010CB328300)the National Natural Science Foundation of China (Nos.61077050, 61077014 and 60932004)+1 种基金the BUPT Young Foundation (No.2009CZ07), Fundamental Research Funds for Central Universitiesthe Open Foundation of State Key Laboratory of Optical Communication Technologies and Networks (WRI) (No.2010OCTN-02)
文摘In order to achieve higher spectral efficiency, mode division multiplexing (MDM) in few-mode fibers is a new research area. The idea faces lots of technical issues including intermodal delay and mode coupling which limit the achievable length of the system. This paper is designated to complete the analysis of intermodal delay in step-index few-mode fibers. We analyze numerically all the parameters of fiber, which could impact intermodal delay in few-mode fibers and identify the conditions which can increase the number of multiplex modes without significant increase in maximum intermodal delay.