Based on the Overlapped Multiplexing Principle[12],a frequency domain OVFDM(Overlapped Frequency Domain Multiplexing) Coding is proposed.By the data weighted shift overlapped version of any band-limited Multiplexing T...Based on the Overlapped Multiplexing Principle[12],a frequency domain OVFDM(Overlapped Frequency Domain Multiplexing) Coding is proposed.By the data weighted shift overlapped version of any band-limited Multiplexing Transfer Function H(f) the coding gain and spectral efficiency are both achieved.The heavier the overlap of the data weighted Multiplexing Transfer Function H(f),the higher the coding gain and spectral efficiency as well as the closer the output to the optimum complex Gaussian distribution.The bit error probability performance is estimated.The time domain OVTDM(Overlapped Time Domain Multiplexing) Coding,the dual of OVFDM in time domain is incidentally proposed as well.Both theoretical analysis and testified simulations show that OVFDM(OVTDM) is suitable for high spectral efficiency application and its spectral efficiency is only roughly linear to SNR rather than the well-known logarithm to SNR.展开更多
We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric ...We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric annealing, for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (-10s), low drain-induced barrier lowering (-30 mV) and low subthreshold swing (-80 mV/decade). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs are also explored. The inverter demonstrates the highest voltage gain (-148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications.展开更多
基金The NNSF(National Nature Science Foundation)of China for their continuously long term support by key projects
文摘Based on the Overlapped Multiplexing Principle[12],a frequency domain OVFDM(Overlapped Frequency Domain Multiplexing) Coding is proposed.By the data weighted shift overlapped version of any band-limited Multiplexing Transfer Function H(f) the coding gain and spectral efficiency are both achieved.The heavier the overlap of the data weighted Multiplexing Transfer Function H(f),the higher the coding gain and spectral efficiency as well as the closer the output to the optimum complex Gaussian distribution.The bit error probability performance is estimated.The time domain OVTDM(Overlapped Time Domain Multiplexing) Coding,the dual of OVFDM in time domain is incidentally proposed as well.Both theoretical analysis and testified simulations show that OVFDM(OVTDM) is suitable for high spectral efficiency application and its spectral efficiency is only roughly linear to SNR rather than the well-known logarithm to SNR.
基金The authors acknowledge H. Ahmad and Y. -S. Shin for graphics assistance. This work was funded by the National Science Foundation under Grant CCF-0541461 and the Department of Energy (DE-FG02-04ER46175). D. Tham gratefully acknowledges support by the KAUST Scholar Award.
文摘We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric annealing, for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (-10s), low drain-induced barrier lowering (-30 mV) and low subthreshold swing (-80 mV/decade). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs are also explored. The inverter demonstrates the highest voltage gain (-148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications.