Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. W...Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. We formulate the model by traffic engineering to achieve link rate a- daption, and also predict traffic matrices to pre- serve network stability. However, we realize that there is a tradeoff between network performance and energy efficiency, which is an obvious issue as Internet grows larger and larger. An essential cause is the huge traffic, and thus we try to fred its so- lution from a novel architecture called Named Data Networking (NDN) which tent in edge routers and can flexibly cache con- decrease the backbone traffic. We combine our methods with NDN, and finally improve both the network performance and the energy efficiency. Our work shows that it is effective, necessary and feasible to consider green- ing idea in the design of future Internet.展开更多
A investigation of the properties of the bound states of D^- centers confined in a parabolic quantum dot has been performed for the case with the presence of a perpendicular magnetic field. Calculations are carried ou...A investigation of the properties of the bound states of D^- centers confined in a parabolic quantum dot has been performed for the case with the presence of a perpendicular magnetic field. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. The binding energies of the ground and some bound-excited states are obtained as a function of the applied magnetic field strength. Detailed calculations of the binding energies for a number of low-lying states show that for field strength less than B = 2.1 T, the D center confined in a quantum dot possesses two bound states, for 2.1 〈 B 〈 2.4 T, there exist three bound states, etc. Further relevant characteristics of the D- center quantum dots in magnetic fields are provided.展开更多
High OPEX (operation expenditure), pollution and complicated environment are challenges which telecom operators have to conquer to improve energy efficiency. Integration and flexibility are tendencies for telecom en...High OPEX (operation expenditure), pollution and complicated environment are challenges which telecom operators have to conquer to improve energy efficiency. Integration and flexibility are tendencies for telecom energy solution development, also the keys to improve energy efficiency. With plentiful design and implementation experience, the author provides a three-dimensional energy matrix model to design a perfect energy system, and some practical measures of integration and flexibility are also shared from mechanical to electrical, from single site to whole network.展开更多
基金This work was supported by the National Key Basic Re- search Program of China under Grant No. 2011 CB302702 the National Natural Science Foundation of China under Grants No. 61132001, No. 61120106008, No. 61070187, No. 60970133, No. 61003225 the Beijing Nova Program.
文摘Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. We formulate the model by traffic engineering to achieve link rate a- daption, and also predict traffic matrices to pre- serve network stability. However, we realize that there is a tradeoff between network performance and energy efficiency, which is an obvious issue as Internet grows larger and larger. An essential cause is the huge traffic, and thus we try to fred its so- lution from a novel architecture called Named Data Networking (NDN) which tent in edge routers and can flexibly cache con- decrease the backbone traffic. We combine our methods with NDN, and finally improve both the network performance and the energy efficiency. Our work shows that it is effective, necessary and feasible to consider green- ing idea in the design of future Internet.
基金supported by National Natural Science Foundation of China under Grant No. 10775035
文摘A investigation of the properties of the bound states of D^- centers confined in a parabolic quantum dot has been performed for the case with the presence of a perpendicular magnetic field. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. The binding energies of the ground and some bound-excited states are obtained as a function of the applied magnetic field strength. Detailed calculations of the binding energies for a number of low-lying states show that for field strength less than B = 2.1 T, the D center confined in a quantum dot possesses two bound states, for 2.1 〈 B 〈 2.4 T, there exist three bound states, etc. Further relevant characteristics of the D- center quantum dots in magnetic fields are provided.
文摘High OPEX (operation expenditure), pollution and complicated environment are challenges which telecom operators have to conquer to improve energy efficiency. Integration and flexibility are tendencies for telecom energy solution development, also the keys to improve energy efficiency. With plentiful design and implementation experience, the author provides a three-dimensional energy matrix model to design a perfect energy system, and some practical measures of integration and flexibility are also shared from mechanical to electrical, from single site to whole network.