SnO2 nanosheet films about 200 nm in thickness are successfully fabricated on fluorine-doped tin oxide (FTO) glass by a facile solution-grown approach. The prepared SnO2 nanosheet film is appfied as an interfacial l...SnO2 nanosheet films about 200 nm in thickness are successfully fabricated on fluorine-doped tin oxide (FTO) glass by a facile solution-grown approach. The prepared SnO2 nanosheet film is appfied as an interfacial layer between the nanocrystalline TiO2 film and the FTO substrate in dye-sensitized solar cells (DSCs). Experimental results show that the introduction of a SnO2 nanosheet film not only suppresses the electron back-transport reaction at the electrolyte/FTO interface but also provides an efficient electron transition channel along the SnO2 nanosheets, and as a result, increasing the open circuit voltage and short current density, and finally improving the conversion efficiency for the DSCs from 3.89% to 4.62%.展开更多
Ti O2 nanowire(NW) is one of the potential scattering layer materials in dye-sensitized solar cells(DSSCs) owing to its fast electron conductivity and excellent light scattering property resulting from its one-dimensi...Ti O2 nanowire(NW) is one of the potential scattering layer materials in dye-sensitized solar cells(DSSCs) owing to its fast electron conductivity and excellent light scattering property resulting from its one-dimensional(1D) morphology. However, Ti O2 NWs used as scattering layers in previous work were either aggregated or shortened into shuttles that cannot use their unique 1D properties. In this paper, we present the preparation of a well-dispersed long NW paste(exceeding 1 ?m) by a mild method and used as a scattering layer in DSSC. The paste achieved a photoconversion efficiency of 5.73% and an efficiency enhancement of 12% compared with commercial scattering layer(P200 paste). Compared with the DSSC without a scattering layer, an efficiency enhancement of 54.9% was achieved. Also, the largest efficiency of 6.89% was obtained after optimization of photoanode thickness. The photoanodes were investigated through dye desorbed experiments and transmission spectra, which suggested that P25 nanoparticles with the as-prepared NW scattering layer loaded more dye than those with P200 paste. These results indicate that well-dispersed long NW paste has a potential application in scattering layers.展开更多
基金supported by the National Natural Science Foundation of China (Nos.20903073 and 20671070)the Key Project of Education Ministry of China (No.207008)+1 种基金the Natural Science Foundation of Tianjin (No.09JCYBJC07000)the Science and Technology Developing Foundation for Tianjin Universities (No.20080309)
文摘SnO2 nanosheet films about 200 nm in thickness are successfully fabricated on fluorine-doped tin oxide (FTO) glass by a facile solution-grown approach. The prepared SnO2 nanosheet film is appfied as an interfacial layer between the nanocrystalline TiO2 film and the FTO substrate in dye-sensitized solar cells (DSCs). Experimental results show that the introduction of a SnO2 nanosheet film not only suppresses the electron back-transport reaction at the electrolyte/FTO interface but also provides an efficient electron transition channel along the SnO2 nanosheets, and as a result, increasing the open circuit voltage and short current density, and finally improving the conversion efficiency for the DSCs from 3.89% to 4.62%.
基金supported by the National Basic Research Program of China(2011CB933002,2012CB932702)the National Natural Science Foundation of China(61306079,60871002)
文摘Ti O2 nanowire(NW) is one of the potential scattering layer materials in dye-sensitized solar cells(DSSCs) owing to its fast electron conductivity and excellent light scattering property resulting from its one-dimensional(1D) morphology. However, Ti O2 NWs used as scattering layers in previous work were either aggregated or shortened into shuttles that cannot use their unique 1D properties. In this paper, we present the preparation of a well-dispersed long NW paste(exceeding 1 ?m) by a mild method and used as a scattering layer in DSSC. The paste achieved a photoconversion efficiency of 5.73% and an efficiency enhancement of 12% compared with commercial scattering layer(P200 paste). Compared with the DSSC without a scattering layer, an efficiency enhancement of 54.9% was achieved. Also, the largest efficiency of 6.89% was obtained after optimization of photoanode thickness. The photoanodes were investigated through dye desorbed experiments and transmission spectra, which suggested that P25 nanoparticles with the as-prepared NW scattering layer loaded more dye than those with P200 paste. These results indicate that well-dispersed long NW paste has a potential application in scattering layers.