基于前期逐小时黑体温度(Temperature of Black Body, TBB)资料对16个暖季高原中尺度对流系统(Mesoscale Convective System, MCS)的统计结果,文章首先利用客观标准选取了同类的11个长生命史高原东移MCS个例,然后,利用这些MCS个例的合...基于前期逐小时黑体温度(Temperature of Black Body, TBB)资料对16个暖季高原中尺度对流系统(Mesoscale Convective System, MCS)的统计结果,文章首先利用客观标准选取了同类的11个长生命史高原东移MCS个例,然后,利用这些MCS个例的合成来驱动中尺度数值模式WRF(Weather Research and Forecasting Model)进行半理想的数值模拟(即基于实际个例的理想模拟)与敏感性试验,结合分析与动力诊断,从共性上研究了一类长生命史高原东移MCS的演变特征及内在机理.主要结论如下:(1)在对流层高层,此类高原MCS的生成区位于高空急流以南的辐散区,在对流层中层,其生成区主要位于高原东部西风带短波槽槽区附近的暖平流中,在对流层低层,它的生成区表现为对流不稳定层结.高原MCS的生成伴随着其气旋式涡度的快速增长,辐合项以及倾斜项是对流层中低层正涡度的主要制造项,对流活动所导致的向上的正涡度输送是高原MCS快速向上伸展的主要原因.(2)高原MCS的东移过程经历了与高原东部准静止维持高原涡的耦合与解耦过程.在两者耦合期,高原MCS有利于高原涡维持较强的辐合与上升运动,这有助于涡旋的持续;随着高原MCS移出高原,其与高原涡解耦,受此影响,高原涡的上升运动显著减弱,向上的正涡度输送大大减弱,这与负的倾斜项一起,共同导致了高原涡的消亡.(3)高原MCS移出高原后,由于高原地表直接作用在MCS底部的强感热加热消失, MCS首先减弱;随后,在高原东部短波槽的影响下,高原MCS再次迅速发展.对流层中低层辐合项的涡度制造以及对流活动对涡度的向上输送是高原MCS再次发展的主导因子.(4)降水凝结潜热释放是长生命史高原东移MCS生成和发展的必要条件,高原MCS一方面可以通过直接产生降水对高原东部以及部分下游地区产生影响;另一方面,它还可以通过对高原及其周边地区大尺度环境场的调节来对更大范围下游地区的降水进行间接的影响.展开更多
High Mountain Asia (HMA), known as Earth's "Third Pole" and"Asia's water tower",. is the largest glacier and snow reservoir onEarth except for the polar ice sheets (Text S1 and Fig. S1 onli...High Mountain Asia (HMA), known as Earth's "Third Pole" and"Asia's water tower",. is the largest glacier and snow reservoir onEarth except for the polar ice sheets (Text S1 and Fig. S1 online)。Snow is an important component of the HMA cryosphere, and itsvariability directly affects the water and energy balances in theregion [1,2] The average warming rate in the HMA region in recentdecades is approximately twofold higher than the average warm-ing rate in China and the world in the same period. The climatologyand trends of snow cover in the HMA have been investigated basedon station and satellite observations. However, these methodshave some limitations, resulting in large uncertainties or limita-tions in assessing long-term snow cover changes in the HMA.Snowpack changes in the HMA region analyzed over a short timeseries may also lead to conclusions that are inconsistent with con-ventional assertions. Several studies of the temporal and spatialvariability of snow cover in the HMA region using short-termModerate Resolution lmaging Spectroradiometer data revealed nosignificant shrinkage in the snow cover area (SCA) [3].展开更多
文摘基于前期逐小时黑体温度(Temperature of Black Body, TBB)资料对16个暖季高原中尺度对流系统(Mesoscale Convective System, MCS)的统计结果,文章首先利用客观标准选取了同类的11个长生命史高原东移MCS个例,然后,利用这些MCS个例的合成来驱动中尺度数值模式WRF(Weather Research and Forecasting Model)进行半理想的数值模拟(即基于实际个例的理想模拟)与敏感性试验,结合分析与动力诊断,从共性上研究了一类长生命史高原东移MCS的演变特征及内在机理.主要结论如下:(1)在对流层高层,此类高原MCS的生成区位于高空急流以南的辐散区,在对流层中层,其生成区主要位于高原东部西风带短波槽槽区附近的暖平流中,在对流层低层,它的生成区表现为对流不稳定层结.高原MCS的生成伴随着其气旋式涡度的快速增长,辐合项以及倾斜项是对流层中低层正涡度的主要制造项,对流活动所导致的向上的正涡度输送是高原MCS快速向上伸展的主要原因.(2)高原MCS的东移过程经历了与高原东部准静止维持高原涡的耦合与解耦过程.在两者耦合期,高原MCS有利于高原涡维持较强的辐合与上升运动,这有助于涡旋的持续;随着高原MCS移出高原,其与高原涡解耦,受此影响,高原涡的上升运动显著减弱,向上的正涡度输送大大减弱,这与负的倾斜项一起,共同导致了高原涡的消亡.(3)高原MCS移出高原后,由于高原地表直接作用在MCS底部的强感热加热消失, MCS首先减弱;随后,在高原东部短波槽的影响下,高原MCS再次迅速发展.对流层中低层辐合项的涡度制造以及对流活动对涡度的向上输送是高原MCS再次发展的主导因子.(4)降水凝结潜热释放是长生命史高原东移MCS生成和发展的必要条件,高原MCS一方面可以通过直接产生降水对高原东部以及部分下游地区产生影响;另一方面,它还可以通过对高原及其周边地区大尺度环境场的调节来对更大范围下游地区的降水进行间接的影响.
基金supported by the National Natural Science Foundation of China(42101054 and 42171126)the Project of Tianshan Innovation Team in Xinjiang(2021D14015)+1 种基金the Xinjiang Talent Programthe Youth Innovation Promotion Association of the Chinese Academy of Sciences。
文摘High Mountain Asia (HMA), known as Earth's "Third Pole" and"Asia's water tower",. is the largest glacier and snow reservoir onEarth except for the polar ice sheets (Text S1 and Fig. S1 online)。Snow is an important component of the HMA cryosphere, and itsvariability directly affects the water and energy balances in theregion [1,2] The average warming rate in the HMA region in recentdecades is approximately twofold higher than the average warm-ing rate in China and the world in the same period. The climatologyand trends of snow cover in the HMA have been investigated basedon station and satellite observations. However, these methodshave some limitations, resulting in large uncertainties or limita-tions in assessing long-term snow cover changes in the HMA.Snowpack changes in the HMA region analyzed over a short timeseries may also lead to conclusions that are inconsistent with con-ventional assertions. Several studies of the temporal and spatialvariability of snow cover in the HMA region using short-termModerate Resolution lmaging Spectroradiometer data revealed nosignificant shrinkage in the snow cover area (SCA) [3].