The decision-making and optimization of two-echelon inventory coordination were analyzed with service level constraint and controllable lead time sensitive to order quantity.First,the basic model of this problem was e...The decision-making and optimization of two-echelon inventory coordination were analyzed with service level constraint and controllable lead time sensitive to order quantity.First,the basic model of this problem was established and based on relevant analysis,the original model could be transformed by minimax method.Then,the optimal order quantity and production quantity influenced by service level constraint were analyzed and the boundary of optimal order quantity and production quantity was given.According to this boundary,the effective method and tactics were put forward to solve the transformed model.In case analysis,the optimal expected total cost of two-echelon inventory can be obtained and it was analyzed how service level constraint and safety factor influence the optimal expected total cost of two-echelon inventory.The results show that the optimal expected total cost of two-echelon inventory is constrained by the higher constraint between service level constraint and safety factor.展开更多
Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over b...Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over both ocean and land, and these measurements allow for the off line development of a lookup table using radiative transfer models. Owing to molecular and aerosol effects, the reflected light received by the sensor is usually highly polarized. The linear polarization effect may be up to 100%, and the polarization factor of a sensor optical system will change the total intensity as well as the polarization status of the signal reaching the detector. The detector response will be different when the incident light polarization status changes, even if the total intensity remains constant. However, if the polarization calibration is neglected, it will cause obvious errors in the aerosol data retrieval. This is especially true for aerosol optical depth retrieval over an ocean. This measurement relies directly on the reflectance output of the sensor. Cases involving land surfaces are not discussed herein because the inhomogeneous properties conceal the error due to polarization. Taking the 550 and 860 nm bands as examples, the difference between the real top-of-atmosphere(TOA) reflectance and the reflectance reaching the detector is calculated using three different sensor polarization standards according to the Sea-viewing Wide Field-of-view Sensor(Sea Wi FS) and Moderate Resolution Imaging Spectroradiometer(MODIS) standards. The differences in AOD retrieval are also demonstrated using the lookup table developed previously from a vector radiative transfer code. The results reveal that under a normal situation in which the AOD is 0.15, the maximum AOD retrieval error could reach 0.04 in 550 nm but only 0.02 in 860 nm for the dust aerosol model. For the soot aerosol model, the maximum AOD retrieval error is 0.1 in 550 nm and 0.12 in 860 nm, indicating that the lack of polarization calibration will lead to large errors in aerosol retrieval over an ocean.展开更多
基金Project(71102174,71372019)supported by the National Natural Science Foundation of ChinaProject(9123028)supported by the Beijing Natural Science Foundation of China+3 种基金Project(20111101120019)supported by the Specialized Research Fund for Doctoral Program of Higher Education of ChinaProject(11JGC106)supported by the Beijing Philosophy&Social Science Foundation of ChinaProjects(NCET-10-0048,NCET-10-0043)supported by the Program for New Century Excellent Talents in University of ChinaProject(2010YC1307)supported by Excellent Young Teacher in Beijing Institute of Technology of China
文摘The decision-making and optimization of two-echelon inventory coordination were analyzed with service level constraint and controllable lead time sensitive to order quantity.First,the basic model of this problem was established and based on relevant analysis,the original model could be transformed by minimax method.Then,the optimal order quantity and production quantity influenced by service level constraint were analyzed and the boundary of optimal order quantity and production quantity was given.According to this boundary,the effective method and tactics were put forward to solve the transformed model.In case analysis,the optimal expected total cost of two-echelon inventory can be obtained and it was analyzed how service level constraint and safety factor influence the optimal expected total cost of two-echelon inventory.The results show that the optimal expected total cost of two-echelon inventory is constrained by the higher constraint between service level constraint and safety factor.
基金supported by the Risk Reduction Programs of the Ministry of Civil Affairs of the People’s Republic of China(Grant No.TC088641)
文摘Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over both ocean and land, and these measurements allow for the off line development of a lookup table using radiative transfer models. Owing to molecular and aerosol effects, the reflected light received by the sensor is usually highly polarized. The linear polarization effect may be up to 100%, and the polarization factor of a sensor optical system will change the total intensity as well as the polarization status of the signal reaching the detector. The detector response will be different when the incident light polarization status changes, even if the total intensity remains constant. However, if the polarization calibration is neglected, it will cause obvious errors in the aerosol data retrieval. This is especially true for aerosol optical depth retrieval over an ocean. This measurement relies directly on the reflectance output of the sensor. Cases involving land surfaces are not discussed herein because the inhomogeneous properties conceal the error due to polarization. Taking the 550 and 860 nm bands as examples, the difference between the real top-of-atmosphere(TOA) reflectance and the reflectance reaching the detector is calculated using three different sensor polarization standards according to the Sea-viewing Wide Field-of-view Sensor(Sea Wi FS) and Moderate Resolution Imaging Spectroradiometer(MODIS) standards. The differences in AOD retrieval are also demonstrated using the lookup table developed previously from a vector radiative transfer code. The results reveal that under a normal situation in which the AOD is 0.15, the maximum AOD retrieval error could reach 0.04 in 550 nm but only 0.02 in 860 nm for the dust aerosol model. For the soot aerosol model, the maximum AOD retrieval error is 0.1 in 550 nm and 0.12 in 860 nm, indicating that the lack of polarization calibration will lead to large errors in aerosol retrieval over an ocean.