The spray-dried spheres within a W/Pt multi-separation can be used to prepare discrete core-shell WC@C/Pt catalysts through a typical carburization production mechanism at 800 ℃. In contrast with previous studies of ...The spray-dried spheres within a W/Pt multi-separation can be used to prepare discrete core-shell WC@C/Pt catalysts through a typical carburization production mechanism at 800 ℃. In contrast with previous studies of the WC/Pt synthesis, the reaction observed here proceeds through an indirect annealing thereby resulting in core-shell structure, and mechanism at 600℃ wherein species diffuse, Pt nanoparticles were successfully dispersed in size/shape and randomly scattered across the in situ produced C spheres. Through direct carburization or at higher initial hydrochloroplatiuic acid concentrations, however, complete reaction with core-shell spheres was not observed. Indirect carburization reduces the strain felt by the bonds featuring the larger WC WC and Pt nanoparticles to be reserved, stability toward methanol oxidation. particles and allows the motion of carbon around influencing the eleetrocatalytic performance and展开更多
The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters we...The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters were firstly served as the chemical plating templates via a polyol-process.Then,one-dimensional(1D) Au-Ag porous nanostructures with tailored structural features could be prepared by controlling the individual steps involved in this process,such as nanowire growth,surface modification,thermal diffusion,and dealloying.Structural characterizations reveal these Au-Ag porous nanotubes,non-porous nanotubes and porous nanowires possess novel nano-architectures with multimodal open porosity and excellent structural continuity and integrity,which make them particularly desirable as novel 1D nanocarriers for biomedical,drug delivery and sensing applications.展开更多
Using structured mesh to discretize the calculation region, the wind velocity and pressure distribution in front of the wind barrier under different embankment heights are investigated based on the Detached Eddy Simul...Using structured mesh to discretize the calculation region, the wind velocity and pressure distribution in front of the wind barrier under different embankment heights are investigated based on the Detached Eddy Simulation(DES) with standard SpalartAllmaras(SA) model. The Reynolds number is 4.0×105 in this calculation. The region is three-dimensional. Since the wind barrier and trains are almost invariable cross-sections, only 25 m along the track is modeled. The height of embankment ranges from 1 m to 5 m and the wind barrier is 3 m high. The results show that the wind speed changes obviously before the wind barrier on the horizontal plane, which is 4.5 m high above the track. The speed of wind reduces gradually while approaching the wind barrier. It reaches the minimum value at a distance about 5 m before the wind barrier, and increases dramatically afterwards. The speed of wind at this location is linear with the speed of far field. The train aerodynamic coefficients decrease sharply with the increment of the embankment height. And they take up the monotonicity. Meanwhile, when the height increases from 3 m to 5 m, they just change slightly. It is concluded that the optimum anemometer location is nearly 5 m in front of the wind barrier.展开更多
We give here an overview of the orbital-flee density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the k...We give here an overview of the orbital-flee density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the kinetic and Hartree energies, and constructions of the pseudopotentials. We discuss numerical discretizations for the orbital-free methods and include several numerical results for illustrations.展开更多
In this paper,15Cr-ODS steels containing 0,1 wt%,2 wt%and 3 wt%Al element were fabricated by combining wet-milling and spark plasma sintering(SPS)methods.The microstructure and mechanical properties of ODS steel were ...In this paper,15Cr-ODS steels containing 0,1 wt%,2 wt%and 3 wt%Al element were fabricated by combining wet-milling and spark plasma sintering(SPS)methods.The microstructure and mechanical properties of ODS steel were investigated by XRD,SEM,TEM,EBSD and tensile tests.The results demonstrate that the Al addition significantly refines the particle precipitates in the Fe-Cr matrix,leading to the obvious refinement in grain size of matrix and the improvement of mechanical properties.The dispersion particles in ODS steels with Al addition are identified as Al2O3 and Y_(2)Ti_(2)O_(7)nanoparticles,which has a heterogeneous size distribution in the range of 5 nm to 300 nm.Increasing Al addition causes an obvious increase in tensile strength and a decline in elongation.The tensile strength and elongation of 15Cr-ODS steel containing 3 wt%Al are 775.3 MPa and 15.1%,respectively.The existence of Al element improves the corrosion resistance of materials.The ODS steel containing 2 wt%Al shows corrosion potential of 0.39 V and passivation current density of 2.61×10^(−3)A/cm^(2)(1.37 V).This work shows that Al-doped ODS steels prepared by wet-milling and SPS methods have a potential application in structural parts for nuclear system.展开更多
To investigate potential strengthening approaches,multi-layered zirconium–titanium(Zr-Ti)composites were fabricated by hot-rolling bonding and annealing.The microstructures of these composites were characterized usin...To investigate potential strengthening approaches,multi-layered zirconium–titanium(Zr-Ti)composites were fabricated by hot-rolling bonding and annealing.The microstructures of these composites were characterized using scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS)and electron backscatter diffractometry(EBSD).Their mechanical properties were evaluated by uniaxial tension and compression measurements.It was found that the fabricated Zr–Ti composites are composed of alternating Zr/diffusion/Ti layers,and chemical compositions of Zr and Ti showed a gradient distribution in the diffusion layer.Compared with as-rolled samples,annealing can strengthen the layered gradient Zr–Ti composite,and this is mainly caused by solid-solution strengthening and microstructure refinement-induced strengthening.Compared with the raw materials,a synergistic improvement of strength and ductility is achieved in the Zr–Ti composite as a result of the layered gradient microstructure.Tension–compression asymmetry is observed in the Zr–Ti composites,which may be attributed to twinning and microvoids induced by unbalanced diffusion.展开更多
The microstructural evolution of AA6061 and Mn-bearing Al-Mg-Si-Cu alloys was studied by compression tests that were carried out between 300 and 500 °C with a wide range of strain rates. Compared to the AA6061 al...The microstructural evolution of AA6061 and Mn-bearing Al-Mg-Si-Cu alloys was studied by compression tests that were carried out between 300 and 500 °C with a wide range of strain rates. Compared to the AA6061 alloy, the large amount of α-Al(MnFeCr)Si dispersoids in the Mn-bearing alloy yielded a significant increase in the flow stress under all deformation conditions. The effects of the deformation parameters on the evolution of the microstructure were studied using electronic backscatter diffraction measurements. The predominant softening mechanism of both alloys was dynamic recovery. The presence of α dispersoids in Mn-bearing alloys effectively refined the size of substructures with misorientation angles in the range of 2°-5°, which retarded the dynamic recovery. To predict the subgrain size under various deformation conditions, the threshold stresses that were caused by α dispersoids were calculated by the modified Orowan equation and incorporated into a conventional constitutive equation. The subgrain size that was predicted by the modified constitutive equation showed satisfactory agreement with the experimental measurements.展开更多
Photocatalytic activity of TiO2 nanopowders of anatase modification with various particle sizes and specific surface areas has been studied in the process of photocatalytic decolorization of aqueous solutions of methy...Photocatalytic activity of TiO2 nanopowders of anatase modification with various particle sizes and specific surface areas has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue and direct blue 2C azodyes. By means of scanning electron microscopy and low-temperature N2 adsorption method, it was found that TiO2 nanopowders have the particles size of 5-120 nm with the specific surface area of 15-120 m2·g^-1. The used TiO2 samples are characterized by mesoporous structures with average pore size of 4.3-14.9 nm. The photocatalytic activity of TiO2 was evaluated via decolorization of azodyes solutions. It was shown that the efficiency of decolorization symbatically changes with the dye adsorption value on TiO2 surface and the degree of decolorization rises when the surface area of TiO2 nanopowders increases. It was found that TiO2 photocatalytic activity essentially depends on adsorption interactions between the dye molecules and catalytic active centers on TiO2 surface, and these interactions, in turn, are greatly affected by pH of the solution.展开更多
The nano-size metal oxide was prepared by the single-disperse technique on liquid phase, and formed sol dusters, its uniform film was covered on the surface of cashmere fibers by coating, and it had good oil repellenc...The nano-size metal oxide was prepared by the single-disperse technique on liquid phase, and formed sol dusters, its uniform film was covered on the surface of cashmere fibers by coating, and it had good oil repellency and water repellency. The results of IR(infrared) Spectrometer analysis revealed: The nano material combines through the strong bonds with the surface of cashmere fibers by the live groups. These analyses by SEM techniques showed that the nano material was distributed on the fiber surface even, and the nano material formed the strong peak of the regular crystal phase structure using the X-Ray Diffractometry (XRD) to analysis the fabric. The optimum techniques were selected by a series of experiments, coated cashmere fabric not only has preserved original properties of softness and comfort, but also has good properties of Bi-repellency function. Therefore, the technique will have potential appfication in engineers.展开更多
Based on some basic principles of self-organization theory including dissipation structure and synergy,the author analyzes the condition,dynamic and evolving route of the self-organization evolution of the real estate...Based on some basic principles of self-organization theory including dissipation structure and synergy,the author analyzes the condition,dynamic and evolving route of the self-organization evolution of the real estate industry,and builds synergetic evolution model,calculates out the order parameter of the real estate industry. The paper supplies new methods and tools for further research of real estate industry and contributes to reference of the government for its direction of macro-control.展开更多
Raman spectra of xLa203-(1-x)TeO2 (x=0, 0.05, 0.10, 0.15, 0.20, and 0.25) lanthanum tellurite glasses were measured and analyzed over the entire glass-forming region in an effort to quantitatively follow the struc...Raman spectra of xLa203-(1-x)TeO2 (x=0, 0.05, 0.10, 0.15, 0.20, and 0.25) lanthanum tellurite glasses were measured and analyzed over the entire glass-forming region in an effort to quantitatively follow the structural changes caused by lanthanum oxide variation. For the first time, systematic intensity measurements have been performed to elucidate the composition induced structural changes in tile high-frequency stretching vibration region and a possible mechanism was proposed. The network structure of the glasses is formed by mixing TeO4 trigonal bipyramid and Te03 trigonal pyramid units. The change of the lanthanum oxide content results in conversion of the TeO4 units to TeO3 units with a varying number of non-bridging oxygen atoms. Analysis of the Raman band contours in terms of vibrations due to different oxygen bridged trigonal bipyramid and trigonal pyramid tellurite structural units, allowed to calculate the relative amounts of the species involved in the structural changes with composition. The fraction of the terminal oxygen atoms has been estimated from the Raman intensities with the aid of a structural model concerning the structure of tellurite network systems. The simulation of the experimental density of lanthanum tellurite glasses with modifier content up to 25% revealed that the short range order building units assumed here are sufficient to account for the overall structure in these glasses.展开更多
Degradation of RC (reinforced concrete) in maritime structures has become a worldwide problem due to its excessive costs of maintenance, repair and replacement in addition to its environmental impacts and safety iss...Degradation of RC (reinforced concrete) in maritime structures has become a worldwide problem due to its excessive costs of maintenance, repair and replacement in addition to its environmental impacts and safety issues. Degradation of both concrete and steel which is the main reason of reduction in the service life of RC structures strongly depends on the diffusion process of moisture and aggressive species. In this paper, the major and popular mathematical models of diffusion process in concrete are surveyed and investigated. Predominantly in these models, the coefficient of chloride diffusion into the concrete is assumed to be constant. Whereas, experimental records indicate that diffusion coefficient is a function of time. Subsequently, data analysis and comparisons between the existing analytical models for predicting the diffusion coefficient with the existing experimental database are carried out in this study. Clearly, these comparisons reveal that there are gaps between the existing mathematical models and previously recorded experimental results. Perhaps, these gaps may be interpreted as influence of the other affecting parameters on the diffusion coefficient such as temperature, aggregate size and relative humidity in addition to the water cement ratio. Accordingly, the existing mathematical models are not adequate enough to predict the diffusion coefficient precisely and further studies need to be performed.展开更多
Here, we report a study of ion transport across graphene oxide (GO) membranes of various thicknesses, made by vacuum filtration of GO aqueous solutions. The diffusive transport rates of two charge-equivalent rutheni...Here, we report a study of ion transport across graphene oxide (GO) membranes of various thicknesses, made by vacuum filtration of GO aqueous solutions. The diffusive transport rates of two charge-equivalent ruthenium complex ions Ru(bpy)3^2+ and Ru(phen)32% with a sub-angstrom size difference, are distinguishable through GO membranes and their ratio can be a unique tool for probing the transport-relevant pore structures. Pore and slit-dominant hindered diffusion models are presented and correlated to experimental results. Our analysis suggests that ion transport is mostly facilitated by large pores (larger than 1.75 nm in diameter) in the relatively thin GO membranes, while slits formed by GO stacking (less than 1.42 nm in width) become dominant only in thick membranes. By grafting PEG molecules to the lateral plane of GO sheets, membranes with enlarged interlayer spacing were engineered, which showed drastically increased ion transport rates and lower distinction among the two ruthenium complex ions, consistent with the prediction by the slit-dominant steric hindered diffusion model.展开更多
Dispersible FePt intermetallic nanopartides (NPs) with tunable composition were synthesized by thermal annealing of MgO coated A1-FePt (or A1-FePt-Fe304) NPs followed by an acid treatment to remove MgO. High-tem- ...Dispersible FePt intermetallic nanopartides (NPs) with tunable composition were synthesized by thermal annealing of MgO coated A1-FePt (or A1-FePt-Fe304) NPs followed by an acid treatment to remove MgO. High-tem- perature annealing facilitates the conversion of FePt from disordered alloy to ordered intermetaUics. Under the protec- tion of MgO, the diffusion of Fe and Pt atoms was limited, making it possible for the atom reconstruction in the lattice to give discrete FePt intermetaUic NPs after a facile acid etching process. FePt intermetallic NPs formed face-centered cubic and face-centered tetragonal structures with their magnetic properties tuned by composition. The saturation magnetiza- tion was adjusted from 8 to 52 emu g^-1 by increasing the Fe concentration, while the coercivity reached a max/mum of 33 kOe when Fe concentration was 44%. After surface mod- ifications by hydrophilic or hydrophobic molecules containing thiol groups, FePt intermetallic NPs could be dissolved into water or hydrocarbon solvents. The hydrophilic L10-FePt in- termetallic NPs were applied as contrast agents for magnetic resonance imaging, showing a high transverse relaxivity of 328.6 mmo1^-1 L s^-l, which indicated the great potential of FePt intermetallic NPs as molecular probes for cancer diagnosis.展开更多
Snow-cover parameters are important indicator factors for hydrological models and climate change studies and have typical vertical stratification characteristics. Remote sensing can be used for large-scale monitoring ...Snow-cover parameters are important indicator factors for hydrological models and climate change studies and have typical vertical stratification characteristics. Remote sensing can be used for large-scale monitoring of snow parameters. In SAR(Interferometric Synthetic Aperture Radar) technology has advantages in detecting the vertical structure of snow cover. As a basis of snow vertical structure detection using In SAR, a scattering model can reveal the physical process of interaction between electromagnetic waves and snow. In recent years, the In SAR scattering model for single-layer snow has been fully studied;however, it cannot be applied to the case of multi-layer snow. To solve this problem, a multi-layer snow scattering mode is proposed in this paper, which applies the QCA(Quad-Crystal Approximation) theory to describe the coherent scattering characteristics of snow and introduces a stratification factor to describe the influence of snow stratification on the crosscorrelation of SAR echoes. Based on the proposed model, we simulate an In SAR volumetric correlation of different types of multi-layer snow at the X band(9.6 GHz). The results show that this model is suitable for multi-layer snow, and the sequence of sub-layers of snow has a significant influence on the volumetric correlation. Compared to the single layer model, the multi-layer model can predict a polarization difference in the volumetric correlation more accurately and thus has a wider scope of application. To make the model more available for snow parameter inversion, a simplified multi-layer model was also developed.The model did not have polarization information compared to that of the full model but showed good consistency with the full model. The phase of the co-polarization In SAR volumetric correlation difference is more sensitive to snow parameters than that of the phase difference of the co-polarization In SAR volumetric correlation and more conducive to the development of a parameter-inversion algorithm. The model can be applied to deepen our understanding of In SAR scattering mechanisms and to develop a snow parameter inversion algorithm.展开更多
Two-dimensional(2D) molybdenum disulfide(MoS2 ) holds significant promise as an energy storage material, whereas the exfoliation of MoS2 into few-layer from natural molybdenites remains a challenge. An efficient elect...Two-dimensional(2D) molybdenum disulfide(MoS2 ) holds significant promise as an energy storage material, whereas the exfoliation of MoS2 into few-layer from natural molybdenites remains a challenge. An efficient electrochemical strategy was proposed for the preparation of fewlayer MoS2 through cationic intercalation. Few-layer MoS2 without the impurity phases was obtained with high yield through Raman mapping analysis, and the intermediate(TBA+)xMoS2x- was captured by in-situ Raman. Note that the charge transport kinetics of the exfoliated few-layer MoS2 was further enhanced by the introduction of graphene, which could efficiently enhance the Na+diffusion mobility, alleviate the volume change of MoS2 and stabilize the reaction products. Commendably, the exfoliated MoS2 /graphene hybrid shows a reversible specific capacity of 642.8 mA h g-1 at 0.1 A g-1, superior rate performance(447.8 and 361.9 mA h g-1 at 1 and 5 A g-1, respectively) and remarkable long-cycle stability with 328.7 mA h g-1 at 1 A g-1 after 1000 cycles for sodium-ion batteries(SIBs). Therefore, this efficient electrochemical exfoliation method can be driven to prepare other few-layer 2D materials for SIBs.展开更多
Spike neural networks are inspired by animal brains,and outperform traditional neural networks on complicated tasks.However,spike neural networks are usually used on a large scale,and they cannot be computed on commer...Spike neural networks are inspired by animal brains,and outperform traditional neural networks on complicated tasks.However,spike neural networks are usually used on a large scale,and they cannot be computed on commercial,off-the-shelf computers.A parallel architecture is proposed and developed for discrete-event simulations of spike neural networks.Furthermore,mechanisms for both parallelism degree estimation and dynamic load balance are emphasized with theoretical and computational analysis.Simulation results show the effectiveness of the proposed parallelized spike neural network system and its corresponding support components.展开更多
Homogenization theory provides a rigorous framework for calculating the effective diffusivity of a decaying passive scalar field in a turbulent or complex flow.The authors extend this framework to the case where the p...Homogenization theory provides a rigorous framework for calculating the effective diffusivity of a decaying passive scalar field in a turbulent or complex flow.The authors extend this framework to the case where the passive scalar fluctuations are continuously replenished by a source (and/or sink).The basic structure of the homogenized equations carries over,but in some cases the homogenized source can involve a non-trivial coupling of the velocity field and the source.The authors derive expressions for the homogenized source term for various multiscale source structures and interpret them physically.展开更多
Co3O4 has been considered as one kind of promising catalysts for the oxidation of CO. According to the Mars-van Krevelen mechanism, oxygen vacancies of Co3O4 play a significant role in catalytic activity. Herein, we r...Co3O4 has been considered as one kind of promising catalysts for the oxidation of CO. According to the Mars-van Krevelen mechanism, oxygen vacancies of Co3O4 play a significant role in catalytic activity. Herein, we report a novel structure-induced strategy to develop hollow Co3O4 with rich oxygen vacancies for efficient oxidation of CO. Through a reduction-oxidation pyrolysis process, the metal-organic frameworks(MOFs) precursor(i.e., ZIF-67) is transformed into H-Co3O4@H-C, in which hollow Co3O4(H-Co3O4) nanoparticles(NPs) are embedded in hollow carbon(H-C) shell.The hollow Co3O4 NPs feature rich oxygen vacancies and finish a complete conversion of CO at 130°C, which is much lower than that of solid Co3O4(the temperature of full CO conversion T100=220°C). Besides, the hollow carbon shell could also reduce the diffusion resistance during the oxidation process. Benefiting from the unique hollow structures,H-Co3O4@H-C even shows comparable activity to noble metal catalysts under high weight hourly space velocities(WHSVs)up to 240,000 mL h^–1 gcat.^–1. Furthermore, the H-Co3O4@H-C catalyst also shows good durability with only a slight decline after the reaction has been operated for 24 h.展开更多
基金This work is supported by the International Science & Technology Cooperation Program of China(No.2010DFB63680), the Natural Science Foundation of Zhejiang Province (LQ15B030004) and Loughborough University and the EPSRC (EP/1013229/1).
文摘The spray-dried spheres within a W/Pt multi-separation can be used to prepare discrete core-shell WC@C/Pt catalysts through a typical carburization production mechanism at 800 ℃. In contrast with previous studies of the WC/Pt synthesis, the reaction observed here proceeds through an indirect annealing thereby resulting in core-shell structure, and mechanism at 600℃ wherein species diffuse, Pt nanoparticles were successfully dispersed in size/shape and randomly scattered across the in situ produced C spheres. Through direct carburization or at higher initial hydrochloroplatiuic acid concentrations, however, complete reaction with core-shell spheres was not observed. Indirect carburization reduces the strain felt by the bonds featuring the larger WC WC and Pt nanoparticles to be reserved, stability toward methanol oxidation. particles and allows the motion of carbon around influencing the eleetrocatalytic performance and
基金Project (2012CB932800) supported by the National Basic Research Program of ChinaProject (2012M521330) supported by China Postdoctoral Science Foundation
文摘The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters were firstly served as the chemical plating templates via a polyol-process.Then,one-dimensional(1D) Au-Ag porous nanostructures with tailored structural features could be prepared by controlling the individual steps involved in this process,such as nanowire growth,surface modification,thermal diffusion,and dealloying.Structural characterizations reveal these Au-Ag porous nanotubes,non-porous nanotubes and porous nanowires possess novel nano-architectures with multimodal open porosity and excellent structural continuity and integrity,which make them particularly desirable as novel 1D nanocarriers for biomedical,drug delivery and sensing applications.
基金Projects(51075401,U1334205)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0833)supported by the New Century Excellent Talents in University,China+2 种基金Project supported by the Scholarship Award for Excellent Innovative Doctoral Student granted by Central South University,ChinaProject(2012T002-E)supported by the Science and Technology Research and Development Program of Ministry of Railway,ChinaProject(14JJ1003)supported by the Natural Science Foundation of Hunan Province,China
文摘Using structured mesh to discretize the calculation region, the wind velocity and pressure distribution in front of the wind barrier under different embankment heights are investigated based on the Detached Eddy Simulation(DES) with standard SpalartAllmaras(SA) model. The Reynolds number is 4.0×105 in this calculation. The region is three-dimensional. Since the wind barrier and trains are almost invariable cross-sections, only 25 m along the track is modeled. The height of embankment ranges from 1 m to 5 m and the wind barrier is 3 m high. The results show that the wind speed changes obviously before the wind barrier on the horizontal plane, which is 4.5 m high above the track. The speed of wind reduces gradually while approaching the wind barrier. It reaches the minimum value at a distance about 5 m before the wind barrier, and increases dramatically afterwards. The speed of wind at this location is linear with the speed of far field. The train aerodynamic coefficients decrease sharply with the increment of the embankment height. And they take up the monotonicity. Meanwhile, when the height increases from 3 m to 5 m, they just change slightly. It is concluded that the optimum anemometer location is nearly 5 m in front of the wind barrier.
基金supported by the National Science Foundation of China under the grant 10425105the National Basic Research Program under the grant 2005CB321704.
文摘We give here an overview of the orbital-flee density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the kinetic and Hartree energies, and constructions of the pseudopotentials. We discuss numerical discretizations for the orbital-free methods and include several numerical results for illustrations.
基金Project(2020JJ2001)supported by Outstanding Youth Scientist Foundation of Hunan Province,ChinaProject(6142912200102)supported by Foundation for National Key Laboratory of Science and Technology on Highstrength Structural Materials,China。
文摘In this paper,15Cr-ODS steels containing 0,1 wt%,2 wt%and 3 wt%Al element were fabricated by combining wet-milling and spark plasma sintering(SPS)methods.The microstructure and mechanical properties of ODS steel were investigated by XRD,SEM,TEM,EBSD and tensile tests.The results demonstrate that the Al addition significantly refines the particle precipitates in the Fe-Cr matrix,leading to the obvious refinement in grain size of matrix and the improvement of mechanical properties.The dispersion particles in ODS steels with Al addition are identified as Al2O3 and Y_(2)Ti_(2)O_(7)nanoparticles,which has a heterogeneous size distribution in the range of 5 nm to 300 nm.Increasing Al addition causes an obvious increase in tensile strength and a decline in elongation.The tensile strength and elongation of 15Cr-ODS steel containing 3 wt%Al are 775.3 MPa and 15.1%,respectively.The existence of Al element improves the corrosion resistance of materials.The ODS steel containing 2 wt%Al shows corrosion potential of 0.39 V and passivation current density of 2.61×10^(−3)A/cm^(2)(1.37 V).This work shows that Al-doped ODS steels prepared by wet-milling and SPS methods have a potential application in structural parts for nuclear system.
基金financially supported by the National Natural Science Foundation of China(No.51971041)the Natural Science Foundation of Chongqing,China(No.cstc2019jcyj-msxm X0234)。
文摘To investigate potential strengthening approaches,multi-layered zirconium–titanium(Zr-Ti)composites were fabricated by hot-rolling bonding and annealing.The microstructures of these composites were characterized using scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS)and electron backscatter diffractometry(EBSD).Their mechanical properties were evaluated by uniaxial tension and compression measurements.It was found that the fabricated Zr–Ti composites are composed of alternating Zr/diffusion/Ti layers,and chemical compositions of Zr and Ti showed a gradient distribution in the diffusion layer.Compared with as-rolled samples,annealing can strengthen the layered gradient Zr–Ti composite,and this is mainly caused by solid-solution strengthening and microstructure refinement-induced strengthening.Compared with the raw materials,a synergistic improvement of strength and ductility is achieved in the Zr–Ti composite as a result of the layered gradient microstructure.Tension–compression asymmetry is observed in the Zr–Ti composites,which may be attributed to twinning and microvoids induced by unbalanced diffusion.
基金the financial supports from the National Natural Science Foundation of China (No. U1864209)Jincheng Science and Technology Plan Project of Shanxi Province, China (No. 201702014)。
文摘The microstructural evolution of AA6061 and Mn-bearing Al-Mg-Si-Cu alloys was studied by compression tests that were carried out between 300 and 500 °C with a wide range of strain rates. Compared to the AA6061 alloy, the large amount of α-Al(MnFeCr)Si dispersoids in the Mn-bearing alloy yielded a significant increase in the flow stress under all deformation conditions. The effects of the deformation parameters on the evolution of the microstructure were studied using electronic backscatter diffraction measurements. The predominant softening mechanism of both alloys was dynamic recovery. The presence of α dispersoids in Mn-bearing alloys effectively refined the size of substructures with misorientation angles in the range of 2°-5°, which retarded the dynamic recovery. To predict the subgrain size under various deformation conditions, the threshold stresses that were caused by α dispersoids were calculated by the modified Orowan equation and incorporated into a conventional constitutive equation. The subgrain size that was predicted by the modified constitutive equation showed satisfactory agreement with the experimental measurements.
文摘Photocatalytic activity of TiO2 nanopowders of anatase modification with various particle sizes and specific surface areas has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue and direct blue 2C azodyes. By means of scanning electron microscopy and low-temperature N2 adsorption method, it was found that TiO2 nanopowders have the particles size of 5-120 nm with the specific surface area of 15-120 m2·g^-1. The used TiO2 samples are characterized by mesoporous structures with average pore size of 4.3-14.9 nm. The photocatalytic activity of TiO2 was evaluated via decolorization of azodyes solutions. It was shown that the efficiency of decolorization symbatically changes with the dye adsorption value on TiO2 surface and the degree of decolorization rises when the surface area of TiO2 nanopowders increases. It was found that TiO2 photocatalytic activity essentially depends on adsorption interactions between the dye molecules and catalytic active centers on TiO2 surface, and these interactions, in turn, are greatly affected by pH of the solution.
文摘The nano-size metal oxide was prepared by the single-disperse technique on liquid phase, and formed sol dusters, its uniform film was covered on the surface of cashmere fibers by coating, and it had good oil repellency and water repellency. The results of IR(infrared) Spectrometer analysis revealed: The nano material combines through the strong bonds with the surface of cashmere fibers by the live groups. These analyses by SEM techniques showed that the nano material was distributed on the fiber surface even, and the nano material formed the strong peak of the regular crystal phase structure using the X-Ray Diffractometry (XRD) to analysis the fabric. The optimum techniques were selected by a series of experiments, coated cashmere fabric not only has preserved original properties of softness and comfort, but also has good properties of Bi-repellency function. Therefore, the technique will have potential appfication in engineers.
文摘Based on some basic principles of self-organization theory including dissipation structure and synergy,the author analyzes the condition,dynamic and evolving route of the self-organization evolution of the real estate industry,and builds synergetic evolution model,calculates out the order parameter of the real estate industry. The paper supplies new methods and tools for further research of real estate industry and contributes to reference of the government for its direction of macro-control.
文摘Raman spectra of xLa203-(1-x)TeO2 (x=0, 0.05, 0.10, 0.15, 0.20, and 0.25) lanthanum tellurite glasses were measured and analyzed over the entire glass-forming region in an effort to quantitatively follow the structural changes caused by lanthanum oxide variation. For the first time, systematic intensity measurements have been performed to elucidate the composition induced structural changes in tile high-frequency stretching vibration region and a possible mechanism was proposed. The network structure of the glasses is formed by mixing TeO4 trigonal bipyramid and Te03 trigonal pyramid units. The change of the lanthanum oxide content results in conversion of the TeO4 units to TeO3 units with a varying number of non-bridging oxygen atoms. Analysis of the Raman band contours in terms of vibrations due to different oxygen bridged trigonal bipyramid and trigonal pyramid tellurite structural units, allowed to calculate the relative amounts of the species involved in the structural changes with composition. The fraction of the terminal oxygen atoms has been estimated from the Raman intensities with the aid of a structural model concerning the structure of tellurite network systems. The simulation of the experimental density of lanthanum tellurite glasses with modifier content up to 25% revealed that the short range order building units assumed here are sufficient to account for the overall structure in these glasses.
文摘Degradation of RC (reinforced concrete) in maritime structures has become a worldwide problem due to its excessive costs of maintenance, repair and replacement in addition to its environmental impacts and safety issues. Degradation of both concrete and steel which is the main reason of reduction in the service life of RC structures strongly depends on the diffusion process of moisture and aggressive species. In this paper, the major and popular mathematical models of diffusion process in concrete are surveyed and investigated. Predominantly in these models, the coefficient of chloride diffusion into the concrete is assumed to be constant. Whereas, experimental records indicate that diffusion coefficient is a function of time. Subsequently, data analysis and comparisons between the existing analytical models for predicting the diffusion coefficient with the existing experimental database are carried out in this study. Clearly, these comparisons reveal that there are gaps between the existing mathematical models and previously recorded experimental results. Perhaps, these gaps may be interpreted as influence of the other affecting parameters on the diffusion coefficient such as temperature, aggregate size and relative humidity in addition to the water cement ratio. Accordingly, the existing mathematical models are not adequate enough to predict the diffusion coefficient precisely and further studies need to be performed.
文摘Here, we report a study of ion transport across graphene oxide (GO) membranes of various thicknesses, made by vacuum filtration of GO aqueous solutions. The diffusive transport rates of two charge-equivalent ruthenium complex ions Ru(bpy)3^2+ and Ru(phen)32% with a sub-angstrom size difference, are distinguishable through GO membranes and their ratio can be a unique tool for probing the transport-relevant pore structures. Pore and slit-dominant hindered diffusion models are presented and correlated to experimental results. Our analysis suggests that ion transport is mostly facilitated by large pores (larger than 1.75 nm in diameter) in the relatively thin GO membranes, while slits formed by GO stacking (less than 1.42 nm in width) become dominant only in thick membranes. By grafting PEG molecules to the lateral plane of GO sheets, membranes with enlarged interlayer spacing were engineered, which showed drastically increased ion transport rates and lower distinction among the two ruthenium complex ions, consistent with the prediction by the slit-dominant steric hindered diffusion model.
基金supported by the National Natural Science Foundation of China (51602285, 51590882, 51631001, 51672010 and 81421004)the National Key R&D Program of China (2017YFA0206301)the Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and technology, Chinese Academy of Sciences (NSKF201607)
文摘Dispersible FePt intermetallic nanopartides (NPs) with tunable composition were synthesized by thermal annealing of MgO coated A1-FePt (or A1-FePt-Fe304) NPs followed by an acid treatment to remove MgO. High-tem- perature annealing facilitates the conversion of FePt from disordered alloy to ordered intermetaUics. Under the protec- tion of MgO, the diffusion of Fe and Pt atoms was limited, making it possible for the atom reconstruction in the lattice to give discrete FePt intermetaUic NPs after a facile acid etching process. FePt intermetallic NPs formed face-centered cubic and face-centered tetragonal structures with their magnetic properties tuned by composition. The saturation magnetiza- tion was adjusted from 8 to 52 emu g^-1 by increasing the Fe concentration, while the coercivity reached a max/mum of 33 kOe when Fe concentration was 44%. After surface mod- ifications by hydrophilic or hydrophobic molecules containing thiol groups, FePt intermetallic NPs could be dissolved into water or hydrocarbon solvents. The hydrophilic L10-FePt in- termetallic NPs were applied as contrast agents for magnetic resonance imaging, showing a high transverse relaxivity of 328.6 mmo1^-1 L s^-l, which indicated the great potential of FePt intermetallic NPs as molecular probes for cancer diagnosis.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41471065 & 41471066)the International Partnership Program of Chinese Academy of Sciences (Grant No. 131C11KYSB20160061)+1 种基金the Science & Technology Basic Resources Investigation Program of China (Grant No. 2017FY100502)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19070201)
文摘Snow-cover parameters are important indicator factors for hydrological models and climate change studies and have typical vertical stratification characteristics. Remote sensing can be used for large-scale monitoring of snow parameters. In SAR(Interferometric Synthetic Aperture Radar) technology has advantages in detecting the vertical structure of snow cover. As a basis of snow vertical structure detection using In SAR, a scattering model can reveal the physical process of interaction between electromagnetic waves and snow. In recent years, the In SAR scattering model for single-layer snow has been fully studied;however, it cannot be applied to the case of multi-layer snow. To solve this problem, a multi-layer snow scattering mode is proposed in this paper, which applies the QCA(Quad-Crystal Approximation) theory to describe the coherent scattering characteristics of snow and introduces a stratification factor to describe the influence of snow stratification on the crosscorrelation of SAR echoes. Based on the proposed model, we simulate an In SAR volumetric correlation of different types of multi-layer snow at the X band(9.6 GHz). The results show that this model is suitable for multi-layer snow, and the sequence of sub-layers of snow has a significant influence on the volumetric correlation. Compared to the single layer model, the multi-layer model can predict a polarization difference in the volumetric correlation more accurately and thus has a wider scope of application. To make the model more available for snow parameter inversion, a simplified multi-layer model was also developed.The model did not have polarization information compared to that of the full model but showed good consistency with the full model. The phase of the co-polarization In SAR volumetric correlation difference is more sensitive to snow parameters than that of the phase difference of the co-polarization In SAR volumetric correlation and more conducive to the development of a parameter-inversion algorithm. The model can be applied to deepen our understanding of In SAR scattering mechanisms and to develop a snow parameter inversion algorithm.
基金supported by the National Natural Science Foundation of China (51622406, 21673298, and 21473258)the National Key Research and Development Program of China (2017YFB0102000 and 2018YFB0104200)the Project of Innovation Driven Plan in Central South University (2017CX004 and 2018CX005)。
文摘Two-dimensional(2D) molybdenum disulfide(MoS2 ) holds significant promise as an energy storage material, whereas the exfoliation of MoS2 into few-layer from natural molybdenites remains a challenge. An efficient electrochemical strategy was proposed for the preparation of fewlayer MoS2 through cationic intercalation. Few-layer MoS2 without the impurity phases was obtained with high yield through Raman mapping analysis, and the intermediate(TBA+)xMoS2x- was captured by in-situ Raman. Note that the charge transport kinetics of the exfoliated few-layer MoS2 was further enhanced by the introduction of graphene, which could efficiently enhance the Na+diffusion mobility, alleviate the volume change of MoS2 and stabilize the reaction products. Commendably, the exfoliated MoS2 /graphene hybrid shows a reversible specific capacity of 642.8 mA h g-1 at 0.1 A g-1, superior rate performance(447.8 and 361.9 mA h g-1 at 1 and 5 A g-1, respectively) and remarkable long-cycle stability with 328.7 mA h g-1 at 1 A g-1 after 1000 cycles for sodium-ion batteries(SIBs). Therefore, this efficient electrochemical exfoliation method can be driven to prepare other few-layer 2D materials for SIBs.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61003082,60921062,61005077)
文摘Spike neural networks are inspired by animal brains,and outperform traditional neural networks on complicated tasks.However,spike neural networks are usually used on a large scale,and they cannot be computed on commercial,off-the-shelf computers.A parallel architecture is proposed and developed for discrete-event simulations of spike neural networks.Furthermore,mechanisms for both parallelism degree estimation and dynamic load balance are emphasized with theoretical and computational analysis.Simulation results show the effectiveness of the proposed parallelized spike neural network system and its corresponding support components.
基金Project supported by the National Science Foundation "Collaborations in Mathematical Geosciences"(No.OCE-0620956)
文摘Homogenization theory provides a rigorous framework for calculating the effective diffusivity of a decaying passive scalar field in a turbulent or complex flow.The authors extend this framework to the case where the passive scalar fluctuations are continuously replenished by a source (and/or sink).The basic structure of the homogenized equations carries over,but in some cases the homogenized source can involve a non-trivial coupling of the velocity field and the source.The authors derive expressions for the homogenized source term for various multiscale source structures and interpret them physically.
基金supported by the National Natural Science Foundation of China (21825802, 21576095 and 21436005)the Fundamental Research Funds for the Central Universities (2019PY11)+2 种基金the Science and Technology Program of Guangzhou (201804020009)the State Key Laboratory of Pulp and Paper Engineering (2017ZD04 and 2018TS03)the Natural Science Foundation of Guangdong Province (2016A050502004 and 2017A030312005)
文摘Co3O4 has been considered as one kind of promising catalysts for the oxidation of CO. According to the Mars-van Krevelen mechanism, oxygen vacancies of Co3O4 play a significant role in catalytic activity. Herein, we report a novel structure-induced strategy to develop hollow Co3O4 with rich oxygen vacancies for efficient oxidation of CO. Through a reduction-oxidation pyrolysis process, the metal-organic frameworks(MOFs) precursor(i.e., ZIF-67) is transformed into H-Co3O4@H-C, in which hollow Co3O4(H-Co3O4) nanoparticles(NPs) are embedded in hollow carbon(H-C) shell.The hollow Co3O4 NPs feature rich oxygen vacancies and finish a complete conversion of CO at 130°C, which is much lower than that of solid Co3O4(the temperature of full CO conversion T100=220°C). Besides, the hollow carbon shell could also reduce the diffusion resistance during the oxidation process. Benefiting from the unique hollow structures,H-Co3O4@H-C even shows comparable activity to noble metal catalysts under high weight hourly space velocities(WHSVs)up to 240,000 mL h^–1 gcat.^–1. Furthermore, the H-Co3O4@H-C catalyst also shows good durability with only a slight decline after the reaction has been operated for 24 h.