The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study,...The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study, the authors investigated aerosol optical properties as a func tion of relative humidity (RH) for two representative me tropolises: Beijing and Hong Kong. In addition to the RH data, mass concentrations of PM10 (particulate matter up to 10 utm in diameter) and aerosol scattering extinction coefficient (aext) data were used. The relationship between the mass scattering extinction efficiency (MEE, defined as O'ext/PMl0) and RH can be expressed by regression func tions asf= 1.52x + 0.29 (re= 0.77),f= 1.42x + 1.53 (re= 0.58),f= 1.19x + 0.65 (re= 0.59), andf= 1.58x + 1.30 (re = 0.61) for spring, summer, autumn, and winter, respec tively, in Beijing. Here, f represents MEE, x represents I/(1-RH), and the coefficients of determination are pre sented in parentheses. Conversely, in Hong Kong, the corresponding functions are f= 1.98x- 1.40 (r^2= 0.55),f = 1.32x - 0.36 (r^2 = 0.26),f= 1.87x - 0.65 (r^2 = 0.64), and f= 2.39x - 1.47 (r^2 = 0.72), respectively. The MEE values for Hong Kong at high RHs (RH 〉 70%) are higher than those for Beijing, except in summer; this suggests that aerosols in Hong Kong are more hygroscopic than those in Beijing for the other three seasons, but the aerosol hy groscopicity is similarly high in summer over both cities. This study describes the effects of moisture on aerosol scattering extinction coefficients and provides a potential method of studying atmospheric visibility and ground level air quality using some of the optical remote sensing products of satellites.展开更多
基金supported by the"Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05040000)the National Natural Science Foundation of China (Grant Nos. 40775002 and 41175020)the National High Technology Research and Development Program of China (863 Program, Grant No. SQ2010AA1221583001)
文摘The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study, the authors investigated aerosol optical properties as a func tion of relative humidity (RH) for two representative me tropolises: Beijing and Hong Kong. In addition to the RH data, mass concentrations of PM10 (particulate matter up to 10 utm in diameter) and aerosol scattering extinction coefficient (aext) data were used. The relationship between the mass scattering extinction efficiency (MEE, defined as O'ext/PMl0) and RH can be expressed by regression func tions asf= 1.52x + 0.29 (re= 0.77),f= 1.42x + 1.53 (re= 0.58),f= 1.19x + 0.65 (re= 0.59), andf= 1.58x + 1.30 (re = 0.61) for spring, summer, autumn, and winter, respec tively, in Beijing. Here, f represents MEE, x represents I/(1-RH), and the coefficients of determination are pre sented in parentheses. Conversely, in Hong Kong, the corresponding functions are f= 1.98x- 1.40 (r^2= 0.55),f = 1.32x - 0.36 (r^2 = 0.26),f= 1.87x - 0.65 (r^2 = 0.64), and f= 2.39x - 1.47 (r^2 = 0.72), respectively. The MEE values for Hong Kong at high RHs (RH 〉 70%) are higher than those for Beijing, except in summer; this suggests that aerosols in Hong Kong are more hygroscopic than those in Beijing for the other three seasons, but the aerosol hy groscopicity is similarly high in summer over both cities. This study describes the effects of moisture on aerosol scattering extinction coefficients and provides a potential method of studying atmospheric visibility and ground level air quality using some of the optical remote sensing products of satellites.