An extended LCAC\|SW(Linear Combination of Arrangement Channels\|Scattering Wavefunction) quantum scattering dynamic method combined with \%ab initio\% quantum chemical calculations has been used to study the formatio...An extended LCAC\|SW(Linear Combination of Arrangement Channels\|Scattering Wavefunction) quantum scattering dynamic method combined with \%ab initio\% quantum chemical calculations has been used to study the formation mechanism of the resonance states for ion\|pair formation reaction Na+I\-2 Na\+++I\+-\-2. Resonance energy and width or lifetime for the first resonance peak were calculated. Resonance can be identified to Feshbach resonance and the physical interpretation was given.展开更多
A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. ...A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. All the peaks in the TOF spectra can be clearly assigned to the ro-vibrational structures of the HF product. The forward scattering of the HF product at v′=3 has been observed. The small forward scattering of the HF product at v′=2 has also been detected. Detailed theoretical analysis is required in order to fully understand the dynamical origin of these forward scattering products at this high collision energy.展开更多
文摘An extended LCAC\|SW(Linear Combination of Arrangement Channels\|Scattering Wavefunction) quantum scattering dynamic method combined with \%ab initio\% quantum chemical calculations has been used to study the formation mechanism of the resonance states for ion\|pair formation reaction Na+I\-2 Na\+++I\+-\-2. Resonance energy and width or lifetime for the first resonance peak were calculated. Resonance can be identified to Feshbach resonance and the physical interpretation was given.
基金This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology and the National Natural Science Foundation of China.ACKN0WLEDGMENT This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology and the National Natural Science Foundation of China.
文摘A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. All the peaks in the TOF spectra can be clearly assigned to the ro-vibrational structures of the HF product. The forward scattering of the HF product at v′=3 has been observed. The small forward scattering of the HF product at v′=2 has also been detected. Detailed theoretical analysis is required in order to fully understand the dynamical origin of these forward scattering products at this high collision energy.