通过比较旋转遮光带日射表(RSP)和参考标准表所测散射辐照度之间的数值差异,分析了太阳总辐照度、环境温度、相对湿度和太阳光谱等气象要素对RSP散射辐照度测量误差的影响关系,提出了一种修正RSP散射辐照度测量值的新算法。该算法从支...通过比较旋转遮光带日射表(RSP)和参考标准表所测散射辐照度之间的数值差异,分析了太阳总辐照度、环境温度、相对湿度和太阳光谱等气象要素对RSP散射辐照度测量误差的影响关系,提出了一种修正RSP散射辐照度测量值的新算法。该算法从支持向量机回归预测角度,建立了对RSP散射误差修正值的一次预测模型,然后根据误差修正值最优预测模型推导出RSP散射辐照度修正算法模型。利用该算法对美国国家太阳辐射研究实验室和劳里观测站采集的RSP散射辐照度数据进行修正,修正后两观测站数据的平均偏差和均方根误差分别降低到-0.2W/m2,3.3W/m2和1.9W/m2,8.5W/m2,显示算法具有良好的修正性能和适用性。该算法能够有效避免Vignola算法中存在的欠修正和Vignola and Augustyn(VA)算法中存在的过修正现象。展开更多
Urban aerosols have a large effect on the deterioration of air quality and the degradation of atmospheric visibility.Characterization of the chemical composition of PM 2.5 and in situ measurements of the optical prope...Urban aerosols have a large effect on the deterioration of air quality and the degradation of atmospheric visibility.Characterization of the chemical composition of PM 2.5 and in situ measurements of the optical properties of aerosols were conducted in July 2008 at an urban site in Guangzhou,Southern China.The mean PM 2.5 concentration for the entire period was 53.7±23.2 μg m 3.The mean PM 2.5 concentration (82.7±25.4 μg m 3) on hazy days was roughly two times higher than that on clear days (38.8±8.7 μg m 3).The total water-soluble ion species and the total average carbon accounted for 47.9%±4.3% and 35.2%±4.5%,respectively,of the major components of PM 2.5.The increase of secondary and carbonaceous aerosols,in particular ammonium sulfate,played an important role in the formation of haze pollution.The mean absorption and scattering coefficients and the single scattering albedo over the whole period were 53±20 M m 1,226±111 M m 1,and 0.80±0.04,respectively.PM 2.5 had a high linear correlation with the aerosol extinction coefficient,elemental carbon (EC) was correlated with aerosol absorption,and organic carbon (OC) and SO 4 2 were tightly linked to aerosol scattering.展开更多
The present work analyzes the effect of aerosols on the evolution of the atmospheric boundary layer (ABL) over Shangdianzi in Beijing.A one-dimensional ABL model and a radiative transfer scheme are incorporated to dev...The present work analyzes the effect of aerosols on the evolution of the atmospheric boundary layer (ABL) over Shangdianzi in Beijing.A one-dimensional ABL model and a radiative transfer scheme are incorporated to develop the structure of the ABL.The diurnal variation of the atmospheric radiative budget,atmospheric heating rate,sensible and latent heat fluxes,surface and the 2 m air temperatures as well as the ABL height,and its perturbations due to the aerosols with different single-scattering albedo (SSA) are studied by comparing the aerosol-laden atmosphere to the clean atmosphere.The results show that the absorbing aerosols cause less reduction in surface evaporation relative to that by scatting aerosols,and both surface temperature and 2 m temperature decrease from the clean atmosphere to the aerosol-laden atmosphere.The greater the aerosol absorption,the more stable the surface layer.After 12:00 am,the 2 m temperature increases for strong absorption aerosols.In the meantime,there is a slight decrease in the 2 m temperature for purely scattering aerosols due to radiative cooling.The purely scattering aerosols decrease the ABL temperature and enhance the capping inversion,further reducing the ABL height.展开更多
To acquire high-quality operational data products for Chinese in-orbit and scheduled ocean color sensors, the performances of two operational atmospheric correction(AC) algorithms(ESA MEGS 7.4.1 and NASA Sea DAS 6.1) ...To acquire high-quality operational data products for Chinese in-orbit and scheduled ocean color sensors, the performances of two operational atmospheric correction(AC) algorithms(ESA MEGS 7.4.1 and NASA Sea DAS 6.1) were evaluated over the East China Seas(ECS) using MERIS data. The spectral remote sensing reflectance R_(rs)(λ), aerosol optical thickness(AOT), and ?ngstr?m exponent(α) retrieved using the two algorithms were validated using in situ measurements obtained between May 2002 and October 2009. Match-ups of R_(rs), AOT, and α between the in situ and MERIS data were obtained through strict exclusion criteria. Statistical analysis of R_(rs)(λ) showed a mean percentage difference(MPD) of 9%–13% in the 490–560 nm spectral range, and significant overestimation was observed at 413 nm(MPD>72%). The AOTs were overestimated(MPD>32%), and although the ESA algorithm outperformed the NASA algorithm in the blue-green bands, the situation was reversed in the red-near-infrared bands. The value of α was obviously underestimated by the ESA algorithm(MPD=41%) but not by the NASA algorithm(MPD=35%). To clarify why the NASA algorithm performed better in the retrieval of α, scatter plots of the α single scattering albedo(SSA) density were prepared. These α-SSA density scatter plots showed that the applicability of the aerosol models used by the NASA algorithm over the ECS is better than that used by the ESA algorithm, although neither aerosol model is suitable for the ECS region. The results of this study provide a reference to both data users and data agencies regarding the use of operational data products and the investigation into the improvement of current AC schemes over the ECS.展开更多
文摘通过比较旋转遮光带日射表(RSP)和参考标准表所测散射辐照度之间的数值差异,分析了太阳总辐照度、环境温度、相对湿度和太阳光谱等气象要素对RSP散射辐照度测量误差的影响关系,提出了一种修正RSP散射辐照度测量值的新算法。该算法从支持向量机回归预测角度,建立了对RSP散射误差修正值的一次预测模型,然后根据误差修正值最优预测模型推导出RSP散射辐照度修正算法模型。利用该算法对美国国家太阳辐射研究实验室和劳里观测站采集的RSP散射辐照度数据进行修正,修正后两观测站数据的平均偏差和均方根误差分别降低到-0.2W/m2,3.3W/m2和1.9W/m2,8.5W/m2,显示算法具有良好的修正性能和适用性。该算法能够有效避免Vignola算法中存在的欠修正和Vignola and Augustyn(VA)算法中存在的过修正现象。
基金supported by the Special Scientific Research Funds for Environment Protection Commonweal Section(Grant Nos.200809143and201009001)the National Basic Research Program of China(Grant No.2010CB428503)+4 种基金the National Natural Science Foundation of China(Grant No.41075096)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.IAP09320)the Research and Development Special Fund for Public Welfare Industry(Meteorology) of the China Meteorological Administration(Grant No.GYHY201006047)the Ministry of Science and Technology of China(Grant No.2010DFA22770)the Innovation Method Fund of China(Grant No.2008IM020500)
文摘Urban aerosols have a large effect on the deterioration of air quality and the degradation of atmospheric visibility.Characterization of the chemical composition of PM 2.5 and in situ measurements of the optical properties of aerosols were conducted in July 2008 at an urban site in Guangzhou,Southern China.The mean PM 2.5 concentration for the entire period was 53.7±23.2 μg m 3.The mean PM 2.5 concentration (82.7±25.4 μg m 3) on hazy days was roughly two times higher than that on clear days (38.8±8.7 μg m 3).The total water-soluble ion species and the total average carbon accounted for 47.9%±4.3% and 35.2%±4.5%,respectively,of the major components of PM 2.5.The increase of secondary and carbonaceous aerosols,in particular ammonium sulfate,played an important role in the formation of haze pollution.The mean absorption and scattering coefficients and the single scattering albedo over the whole period were 53±20 M m 1,226±111 M m 1,and 0.80±0.04,respectively.PM 2.5 had a high linear correlation with the aerosol extinction coefficient,elemental carbon (EC) was correlated with aerosol absorption,and organic carbon (OC) and SO 4 2 were tightly linked to aerosol scattering.
文摘The present work analyzes the effect of aerosols on the evolution of the atmospheric boundary layer (ABL) over Shangdianzi in Beijing.A one-dimensional ABL model and a radiative transfer scheme are incorporated to develop the structure of the ABL.The diurnal variation of the atmospheric radiative budget,atmospheric heating rate,sensible and latent heat fluxes,surface and the 2 m air temperatures as well as the ABL height,and its perturbations due to the aerosols with different single-scattering albedo (SSA) are studied by comparing the aerosol-laden atmosphere to the clean atmosphere.The results show that the absorbing aerosols cause less reduction in surface evaporation relative to that by scatting aerosols,and both surface temperature and 2 m temperature decrease from the clean atmosphere to the aerosol-laden atmosphere.The greater the aerosol absorption,the more stable the surface layer.After 12:00 am,the 2 m temperature increases for strong absorption aerosols.In the meantime,there is a slight decrease in the 2 m temperature for purely scattering aerosols due to radiative cooling.The purely scattering aerosols decrease the ABL temperature and enhance the capping inversion,further reducing the ABL height.
基金Supported by the State Key Program of National Natural Science Foundation of China(No.60638020)the State Scholarship Fund of the China Scholarship Council(CSC)+1 种基金the National Natural Science Foundation of China(Nos.41321004,41276028,41206006,41306192,41306035)the Natural Science Foundation of Zhejiang Province(No.LY15D060001)
文摘To acquire high-quality operational data products for Chinese in-orbit and scheduled ocean color sensors, the performances of two operational atmospheric correction(AC) algorithms(ESA MEGS 7.4.1 and NASA Sea DAS 6.1) were evaluated over the East China Seas(ECS) using MERIS data. The spectral remote sensing reflectance R_(rs)(λ), aerosol optical thickness(AOT), and ?ngstr?m exponent(α) retrieved using the two algorithms were validated using in situ measurements obtained between May 2002 and October 2009. Match-ups of R_(rs), AOT, and α between the in situ and MERIS data were obtained through strict exclusion criteria. Statistical analysis of R_(rs)(λ) showed a mean percentage difference(MPD) of 9%–13% in the 490–560 nm spectral range, and significant overestimation was observed at 413 nm(MPD>72%). The AOTs were overestimated(MPD>32%), and although the ESA algorithm outperformed the NASA algorithm in the blue-green bands, the situation was reversed in the red-near-infrared bands. The value of α was obviously underestimated by the ESA algorithm(MPD=41%) but not by the NASA algorithm(MPD=35%). To clarify why the NASA algorithm performed better in the retrieval of α, scatter plots of the α single scattering albedo(SSA) density were prepared. These α-SSA density scatter plots showed that the applicability of the aerosol models used by the NASA algorithm over the ECS is better than that used by the ESA algorithm, although neither aerosol model is suitable for the ECS region. The results of this study provide a reference to both data users and data agencies regarding the use of operational data products and the investigation into the improvement of current AC schemes over the ECS.