Heavy-medium cyclones are widely used to upgrade run-of-mine coal.But the understanding of flow in a cyclone containing a dense medium is still incomplete.By introducing turbulent diffusion into calculations of centri...Heavy-medium cyclones are widely used to upgrade run-of-mine coal.But the understanding of flow in a cyclone containing a dense medium is still incomplete.By introducing turbulent diffusion into calculations of centrifugal settling a theoretical distribution function giving the density field can be deduced.Qualitative analysis of the density field in every part of a cylindrical cyclone suggests an optimum design that has exhibited good separation effectiveness and anti-wear performance when in commercial operation.展开更多
The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations....The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations.The TIP3P potential is used for water and the EPM2 model is for CO2.The water phase and SC-CO2 phase form a distinct immiscible liquid-liquid interface.The two chelating molecules show interfacial preference.Comparatively,the AA molecules show somewhat more preference for interfacial region,whereas the HFA molecules are preferably near the Sc-CO2 phase.The orientational distribution of the β-diketone molecules and the radial distribution functions between β-diketones and solvents are obtained in order to study the microscopic structural properties of the β-diketones at the water-SC-CO2 interface.It is found that the translational diffusion and rotational diffusion of HFA and AA are obviously anisotropic and decrease as the β-diketone molecules approach the interface.The anisotropic dynamic behavior for the solute molecules is related to the corresponding structural properties.展开更多
An approximation method based on Regge behavior is presented. This new methodrelates the reduced cross section derivative and the structure function Regge behavior at low x.With the use of this approximation method, t...An approximation method based on Regge behavior is presented. This new methodrelates the reduced cross section derivative and the structure function Regge behavior at low x.With the use of this approximation method, the C and λ parameters are calcuiated from the HERAreduced cross section data taken at low-x. Also, we calculate the structure functions F_2(x, Q~2)even for low-x values, which have not been investigated. To test the validity of calculatedstructure functions, we find the gluon distribution function in the Leading order approximationbased on Regge behaviour of structure function and compare to the NLO QCD fit to H1 data and NLOparton distribution function.展开更多
Scattering phase function is assumed to be one of the most significant factors in the inherent optical properties (lOPs) of natural water. According to three criteria proposed for assessment, several commonly used e...Scattering phase function is assumed to be one of the most significant factors in the inherent optical properties (lOPs) of natural water. According to three criteria proposed for assessment, several commonly used empirical phase functions are compared with their related practical or theoretical scattering distributions in terms of fitting errors under the circumstances of typical seawater and single-component polydisperse systems. The optimal factors corresponding to the minimum fitting errors are also calculated. It is found that both the one-term Henyey-Greenstein (OTHG) and two-term Henyey-Greenstein (TTHG) phase functions agree well with the theoretical ones for small particles, while the Fouriner-Forand (FF) phase function can be used in the case of suspensions with large suspended particles. The fitting accuracy of OTHG is the worst, FF is better and TTHG is the best.展开更多
基金supported by the National Natural Science Foundation of China(No.50921002)
文摘Heavy-medium cyclones are widely used to upgrade run-of-mine coal.But the understanding of flow in a cyclone containing a dense medium is still incomplete.By introducing turbulent diffusion into calculations of centrifugal settling a theoretical distribution function giving the density field can be deduced.Qualitative analysis of the density field in every part of a cylindrical cyclone suggests an optimum design that has exhibited good separation effectiveness and anti-wear performance when in commercial operation.
基金Supported by the National Natural Science Foundation of China (20776066, 20476044) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060291002).
文摘The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations.The TIP3P potential is used for water and the EPM2 model is for CO2.The water phase and SC-CO2 phase form a distinct immiscible liquid-liquid interface.The two chelating molecules show interfacial preference.Comparatively,the AA molecules show somewhat more preference for interfacial region,whereas the HFA molecules are preferably near the Sc-CO2 phase.The orientational distribution of the β-diketone molecules and the radial distribution functions between β-diketones and solvents are obtained in order to study the microscopic structural properties of the β-diketones at the water-SC-CO2 interface.It is found that the translational diffusion and rotational diffusion of HFA and AA are obviously anisotropic and decrease as the β-diketone molecules approach the interface.The anisotropic dynamic behavior for the solute molecules is related to the corresponding structural properties.
文摘An approximation method based on Regge behavior is presented. This new methodrelates the reduced cross section derivative and the structure function Regge behavior at low x.With the use of this approximation method, the C and λ parameters are calcuiated from the HERAreduced cross section data taken at low-x. Also, we calculate the structure functions F_2(x, Q~2)even for low-x values, which have not been investigated. To test the validity of calculatedstructure functions, we find the gluon distribution function in the Leading order approximationbased on Regge behaviour of structure function and compare to the NLO QCD fit to H1 data and NLOparton distribution function.
基金supported by the National "863" Program (No. 2006AA09Z207)
文摘Scattering phase function is assumed to be one of the most significant factors in the inherent optical properties (lOPs) of natural water. According to three criteria proposed for assessment, several commonly used empirical phase functions are compared with their related practical or theoretical scattering distributions in terms of fitting errors under the circumstances of typical seawater and single-component polydisperse systems. The optimal factors corresponding to the minimum fitting errors are also calculated. It is found that both the one-term Henyey-Greenstein (OTHG) and two-term Henyey-Greenstein (TTHG) phase functions agree well with the theoretical ones for small particles, while the Fouriner-Forand (FF) phase function can be used in the case of suspensions with large suspended particles. The fitting accuracy of OTHG is the worst, FF is better and TTHG is the best.