Suitable stabilization conditions obtained for continuous chaotic systems are generalized to discrete-time chaotic systems. The proposed approach, leading to these conditions for complete synchronization is based on t...Suitable stabilization conditions obtained for continuous chaotic systems are generalized to discrete-time chaotic systems. The proposed approach, leading to these conditions for complete synchronization is based on the use of state feedback and aggregation techniques for stability studies associated with the arrow form matrix for system description. The results are successfully applied for two identical discrete-time hyper chaotic Henon maps with different orders and also for non-identical discrete-time chaotic systems with same order namely the Lozi and the Ushio maps.展开更多
文摘Suitable stabilization conditions obtained for continuous chaotic systems are generalized to discrete-time chaotic systems. The proposed approach, leading to these conditions for complete synchronization is based on the use of state feedback and aggregation techniques for stability studies associated with the arrow form matrix for system description. The results are successfully applied for two identical discrete-time hyper chaotic Henon maps with different orders and also for non-identical discrete-time chaotic systems with same order namely the Lozi and the Ushio maps.