Chandrasekran-paul (1982) made an equation of drug release from matrix system as follows:In this paper a simplified expression has been deduced from it within ordinary range of experimental time and with appropriate v...Chandrasekran-paul (1982) made an equation of drug release from matrix system as follows:In this paper a simplified expression has been deduced from it within ordinary range of experimental time and with appropriate values of K. The cumulative amount of drug release may vary in directproportion to the square root of time with an intercept,that is,The release behaviour of both nifedipine patch and propranolol patch has fit the expression with good correlation coefficient.The re0lease data of hydrocortisone creams (Shah,1989)also can be described by the same expression.Compared with Higuchi’s equation,the presence of the intercept,A〃,may be relative to drug dissolution characteristics展开更多
The universe content is considered as a non-perfect fluid with bulk viscosity and can be described by a general equation of state (endowed some deviation from the conventionally assumed cosmic perfect fluid model). ...The universe content is considered as a non-perfect fluid with bulk viscosity and can be described by a general equation of state (endowed some deviation from the conventionally assumed cosmic perfect fluid model). An explicitly bulk viscosity dark energy model is proposed to confront consistently with the current observational data sets by statistical analysis and is shown consistent with (not deviated away much from) the concordant A Cold Dark Matter (CDM) model by comparing the decelerating parameter. Also we compare our relatively simple viscosity dark energy model with a more complicated one by contrast with the concordant ACDM model and find our model improves for the viscosity dark energy model building. Finally we discuss the perspectives of dark energy probes for the coming years with observations.展开更多
In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general ...In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ0 +λ1(1 +z)n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. B2 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ACDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {τ, s} as axes where the fixed point represents the A CDM model The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling.展开更多
On the base of nonlinear liquidus and solidus,an extended model for dendrite growth in bulk undercooled melts was developed under local non-equilibrium conditions both at the interface and in the bulk liquid.In terms ...On the base of nonlinear liquidus and solidus,an extended model for dendrite growth in bulk undercooled melts was developed under local non-equilibrium conditions both at the interface and in the bulk liquid.In terms of thermodynamic calculations of the phase diagram,the model predictions are relatively realistic physically,since few fitting parameters are used in the model predictions.Adopting three characteristic velocities,i.e.the critical velocity of absolute solute stability(VC*),the velocity of maximal tip radius(VRm),and the velocity of bulk liquid diffusion(VD),a quantitative agreement is obtained between the model predictions and the experimental results in undercooled Ni-0.7%B and Ni-1%Zr(molar fraction) alloys,and the overall solidification process can be categorized.展开更多
Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated. ...Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated. For parameters in a certain region, the oscillation can be induced by the cooperative effect of noise and coupling. Whether considering the coupling or not, corresponding coherence resonance phenomena are observed. Furthermore, the effects of two coupling parameters, cell size L and coupling intensity k, on the noise-induced oscillation of membranes are studied. Contrary effects of noise are found in and out of the deterministic oscillatory regions.展开更多
CO2 sorption and diffusion in coal are closely related to the occurrence of coal and gas outburst,geological sequestration of CO2 in coalbeds,and enhancing coalbed methane recovery by injecting CO2.Hence,it is signifi...CO2 sorption and diffusion in coal are closely related to the occurrence of coal and gas outburst,geological sequestration of CO2 in coalbeds,and enhancing coalbed methane recovery by injecting CO2.Hence,it is significant to investigate the sorption properties and diffusion models of CO2 in coal.Here we used a newly designed experimental apparatus at Peking University to investigate the sorption and diffusion properties of CO2 in natural coal samples from Dashucun Mine and Wutongzhuang Mine in Handan city,Hebei province,and Jinhuagong Mine in Datong city,Shanxi province,and obtained CO2 sorption isotherms and diffusivity models.The results indicate that,in a certain pressure range,CO2 sorption isotherms for the coal samples are consistent with the Langmuir model,which assumes that monolayer sorption occurs at the interface between coal matrix and CO2 molecules,and the sorption isotherms feature nonstandard hyperbolas in mathematics.At the same pressure and temperature,as the vitrinite content increases,coal adsorbs more CO2 molecules.The relation between the sorption capacity and the coal rank may be described as a "U-type" trend,and medium rank coal has the least sorption capacity.The bulk diffusivity of CO2 in coal is not constant;in the range of CO2 mass fraction greater than 1%,it increases roughly linearly with increasing mass fraction of CO2 adsorbed(or CO2 partial pressure) in coal.CO2 diffusivity in coal is approximately 10-4 to 10-2 mm2/s in magnitudes,and the diffusivity ranges in coal samples are 3×10-4 to 8×10-3 mm2/s from Dashucun Mine,2×10-4 to 4×10-3 mm2/s from Wutongzhuang Mine,and 2×10-4 to 4×10-3 mm2/s from Jinhuagong Mine.The results of the CO2 sorption and diffusion study can be applied to help predict and prevent coal and gas outburst as well as to evaluate the feasibility in geological sequestration of CO2 and to enhance coalbed methane recovery.展开更多
pH-and reductive-responsive prodrug nanoparticles are constructed via a highly efficient strategy, polymerization-induced selfassembly(PISA). First, reversible addition-fragmentation chain transfer(RAFT) polymerizatio...pH-and reductive-responsive prodrug nanoparticles are constructed via a highly efficient strategy, polymerization-induced selfassembly(PISA). First, reversible addition-fragmentation chain transfer(RAFT) polymerization of 2-(diisopropylamino) ethyl methacrylate(DIPEMA) and camptothecin prodrug monomer(CPTM) using biocompatible poly(N-(2-hydroxypropyl) methacrylamide)(PHPMA-CPDB) as the macro RAFT agent is carried out, forming prodrug diblock copolymer PHPMA-P(DIPEMA-co-CPTM). Then, simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation are achieved via RAFT dispersion polymerization of benzyl methacrylate(Bz MA) using the PHPMA-P(DIPEMA-co-CPTM) as the macro RAFT agent. The prodrug nanoparticles have three layers, the biocompatible shell(PHPMA), the drug-conjugated middle layer(P(DIPEMA-co-CPTM)) and the PBz MA core, and relatively high concentration(250 mg/g). The prodrug nanoparticles can respond to two stimuli(reductive and acidic conditions). Due to reductive microenvironment of cytosol, the cleavage of the conjugated camptothecin(CPT) within the prodrug nanoparticles could be effectively triggered. p H-Induced hydrophobic/hydrophilic transition of the PDIPEMA chains results in faster diffusion of GSH into the CPTM units, thus accelerated release of CPT is observed in mild acidic and reductive conditions. Cell viability assays show that the prodrug nanoparticles exhibit well performance of intracellular drug delivery and good anticancer activity.展开更多
文摘Chandrasekran-paul (1982) made an equation of drug release from matrix system as follows:In this paper a simplified expression has been deduced from it within ordinary range of experimental time and with appropriate values of K. The cumulative amount of drug release may vary in directproportion to the square root of time with an intercept,that is,The release behaviour of both nifedipine patch and propranolol patch has fit the expression with good correlation coefficient.The re0lease data of hydrocortisone creams (Shah,1989)also can be described by the same expression.Compared with Higuchi’s equation,the presence of the intercept,A〃,may be relative to drug dissolution characteristics
基金Supported by the National Natural Science Foundation of China under Grant No.10675062the Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Sciences under Grant No.KJCX2.YW.W10
文摘The universe content is considered as a non-perfect fluid with bulk viscosity and can be described by a general equation of state (endowed some deviation from the conventionally assumed cosmic perfect fluid model). An explicitly bulk viscosity dark energy model is proposed to confront consistently with the current observational data sets by statistical analysis and is shown consistent with (not deviated away much from) the concordant A Cold Dark Matter (CDM) model by comparing the decelerating parameter. Also we compare our relatively simple viscosity dark energy model with a more complicated one by contrast with the concordant ACDM model and find our model improves for the viscosity dark energy model building. Finally we discuss the perspectives of dark energy probes for the coming years with observations.
基金Supported by the Natural Science Foundation of China under Grant Nos. 11075078 and 10675062by the Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Sciences under Grant No. KJCX2.YW.W10 through the KITPC where we started this work
文摘In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ0 +λ1(1 +z)n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. B2 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ACDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {τ, s} as axes where the fixed point represents the A CDM model The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling.
基金Projects(50501020, 50395103, 50431030) supported by the National Natural Science Foundation of ChinaProject(NCET-05-870) supported by Program for New Century Excellent Talents in Chinese UniversityProject(CX200706) supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘On the base of nonlinear liquidus and solidus,an extended model for dendrite growth in bulk undercooled melts was developed under local non-equilibrium conditions both at the interface and in the bulk liquid.In terms of thermodynamic calculations of the phase diagram,the model predictions are relatively realistic physically,since few fitting parameters are used in the model predictions.Adopting three characteristic velocities,i.e.the critical velocity of absolute solute stability(VC*),the velocity of maximal tip radius(VRm),and the velocity of bulk liquid diffusion(VD),a quantitative agreement is obtained between the model predictions and the experimental results in undercooled Ni-0.7%B and Ni-1%Zr(molar fraction) alloys,and the overall solidification process can be categorized.
基金supported by the National Natural Science Foundation of China under Grant No.10575041
文摘Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated. For parameters in a certain region, the oscillation can be induced by the cooperative effect of noise and coupling. Whether considering the coupling or not, corresponding coherence resonance phenomena are observed. Furthermore, the effects of two coupling parameters, cell size L and coupling intensity k, on the noise-induced oscillation of membranes are studied. Contrary effects of noise are found in and out of the deterministic oscillatory regions.
基金supported by Peking University (985 Program by Chinese Ministry of Education)the National Natural Science Foundation of China (Grant No.40640420141)
文摘CO2 sorption and diffusion in coal are closely related to the occurrence of coal and gas outburst,geological sequestration of CO2 in coalbeds,and enhancing coalbed methane recovery by injecting CO2.Hence,it is significant to investigate the sorption properties and diffusion models of CO2 in coal.Here we used a newly designed experimental apparatus at Peking University to investigate the sorption and diffusion properties of CO2 in natural coal samples from Dashucun Mine and Wutongzhuang Mine in Handan city,Hebei province,and Jinhuagong Mine in Datong city,Shanxi province,and obtained CO2 sorption isotherms and diffusivity models.The results indicate that,in a certain pressure range,CO2 sorption isotherms for the coal samples are consistent with the Langmuir model,which assumes that monolayer sorption occurs at the interface between coal matrix and CO2 molecules,and the sorption isotherms feature nonstandard hyperbolas in mathematics.At the same pressure and temperature,as the vitrinite content increases,coal adsorbs more CO2 molecules.The relation between the sorption capacity and the coal rank may be described as a "U-type" trend,and medium rank coal has the least sorption capacity.The bulk diffusivity of CO2 in coal is not constant;in the range of CO2 mass fraction greater than 1%,it increases roughly linearly with increasing mass fraction of CO2 adsorbed(or CO2 partial pressure) in coal.CO2 diffusivity in coal is approximately 10-4 to 10-2 mm2/s in magnitudes,and the diffusivity ranges in coal samples are 3×10-4 to 8×10-3 mm2/s from Dashucun Mine,2×10-4 to 4×10-3 mm2/s from Wutongzhuang Mine,and 2×10-4 to 4×10-3 mm2/s from Jinhuagong Mine.The results of the CO2 sorption and diffusion study can be applied to help predict and prevent coal and gas outburst as well as to evaluate the feasibility in geological sequestration of CO2 and to enhance coalbed methane recovery.
基金supported by the National Key R&D Program of China (2017YFA0205601)the National Natural Science Foundation of China (51625305, 21704095, 21774113, 21525420)
文摘pH-and reductive-responsive prodrug nanoparticles are constructed via a highly efficient strategy, polymerization-induced selfassembly(PISA). First, reversible addition-fragmentation chain transfer(RAFT) polymerization of 2-(diisopropylamino) ethyl methacrylate(DIPEMA) and camptothecin prodrug monomer(CPTM) using biocompatible poly(N-(2-hydroxypropyl) methacrylamide)(PHPMA-CPDB) as the macro RAFT agent is carried out, forming prodrug diblock copolymer PHPMA-P(DIPEMA-co-CPTM). Then, simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation are achieved via RAFT dispersion polymerization of benzyl methacrylate(Bz MA) using the PHPMA-P(DIPEMA-co-CPTM) as the macro RAFT agent. The prodrug nanoparticles have three layers, the biocompatible shell(PHPMA), the drug-conjugated middle layer(P(DIPEMA-co-CPTM)) and the PBz MA core, and relatively high concentration(250 mg/g). The prodrug nanoparticles can respond to two stimuli(reductive and acidic conditions). Due to reductive microenvironment of cytosol, the cleavage of the conjugated camptothecin(CPT) within the prodrug nanoparticles could be effectively triggered. p H-Induced hydrophobic/hydrophilic transition of the PDIPEMA chains results in faster diffusion of GSH into the CPTM units, thus accelerated release of CPT is observed in mild acidic and reductive conditions. Cell viability assays show that the prodrug nanoparticles exhibit well performance of intracellular drug delivery and good anticancer activity.