The flow field and flow state of thin-film evaporators are complex,and it is significant to effectively divide and quantify the flow field and flow state,as well as to study the internal flow field distribution and ma...The flow field and flow state of thin-film evaporators are complex,and it is significant to effectively divide and quantify the flow field and flow state,as well as to study the internal flow field distribution and material mixing characteristics to improve the efficiency of thin-film evaporators.By using computational fluid dynamics(CFD)numerical simulation,the distribution pattern of the high-viscosity fluid flow field in the thin-film evaporators was obtained.It was found that the staggered interrupted blades could greatly promote material mixing and transportation,and impact the film formation of high-viscosity materials on the evaporator wall.Furthermore,a flow field state recognition method based on radial volume fraction statistics was proposed,and could quantitatively describe the internal flow field of thin-film evaporators.The method divides the high-viscosity materials in the thin-film evaporators into three flow states,the liquid film state,the exchange state and the liquid mass state.The three states of materials could be quantitatively described.The results show that the materials in the exchange state can connect the liquid film and the liquid mass,complete the material mixing and exchange,renew the liquid film,and maintain continuous and efficient liquid film evaporation.展开更多
The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the ...The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the bypass ratio and the scarf angle on the mixing performance for the scarfed lobed mixer. Results show that the scarfed lobed mixer is reduced in the system weight. Meanwhile, aerodynamic performances are slightly improved compared with the normal lobed mixer. Two reasons for causing the mixing enhancement between the core and the bypass flow are as follows: (1) The stream-wise vortices shed from the training edge of the half/full scarfed lobed mixer earlier is enhanced by about 25%. (2) The mixing augmentation is also associated with the increase of the interface length caused by scarfing. The thermal mixing efficiency is enhanced with the increase of the bypass ratio and the scarfing angle. The scarfed lobed mixer design has no negative effects on the pressure loss. The total pressure recovery coefficient reaches above 0. 935 in various bypass ratios and scarfed angles. As the bypass ratio increases, the total pressure recovery coefficient also increases for the scarfed lobed mixer.展开更多
To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the ...To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively.展开更多
Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visual...Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visualized material flow patterns, a three-dimensional model was developed to conduct the numerical simulation of the temperature profile and plastic material flow in friction stir welding. The calculated velocity contour of plastic flow in close proximity of the tool is generally consistent with the visualized results. As the tool rotation speed increases at a constant tool travel speed, the material flow near the pin gets stronger. The predicted shape and size of the weld nugget zone match with the experimentally measured ones.展开更多
At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-se...At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter.展开更多
The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms ...The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms of wire-width compensation, extrusion velocity, filing velocity, and layer thickness are chosen as the control fac- tors. Robust design analysis and multi-index fuzzy comprehensive assessment method are used to obtain the opti- mal parameters. Results show that the influencing degrees of these four factors on the precision of as-processed parts are different. The optimizations of individual parameters and their combined effects are of the same impor- tance for a high precision manufacturing.展开更多
To accurately describe the mechanical properties of aluminium alloy sheet during deformation, an inverse identification was presented to deal with material parameters from the popular punch stretch test. In the identi...To accurately describe the mechanical properties of aluminium alloy sheet during deformation, an inverse identification was presented to deal with material parameters from the popular punch stretch test. In the identification procedure, the optimization strategy combines finite element method (FEM), Latin hypercube sampling (LHS), Kriging model and multi-island genetic algorithm (MIGA). The proposed approach is used on material parameter identification of aluminium alloy sheet 2D12. The anisotropic yield criterion Hill’90 is discussed. The results show that the Hill’90 anisotropic yield criterion with identified anisotropic material parameters has a good potential in describing the anisotropic behaviours. It provides a way to obtain the material parameters for FE simulations of sheet metal forming.展开更多
The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and...The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and most importantly, no paradoxical parameters appeared in the model. Moreover, it can simulate different microstructure patterns owing to the use of a new different free energy function for the simulation of morphologies of polymer. The new free energy function considers both the cases of T〈Tm and T≥Tm, which is more reasonable than that in published literatures that all ignored the T≥Tm case. In order to show the validity of the modified model, the finite difference method is used to solve the model and different crystallization morphologies during the solidification process of isotactic polystyrene are obtained under different conditions. Numerical results show that the growth rate of the initial secondary arms is obviously increased as the anisotropy strength increases. But the anisotropy strength seems to have no apparent effect on the global growth rate. The whole growth process of the dendrite depends mainly upon the latent heat and the latent heat has a direct effect on the tip radius and tip velocity of side branches.展开更多
The deformation characteristic in the forming process of aluminum alloy 7075 cross valve under multi-way loading was investigated by numerical simulation method. The results indicate that there exist 4 deformation pat...The deformation characteristic in the forming process of aluminum alloy 7075 cross valve under multi-way loading was investigated by numerical simulation method. The results indicate that there exist 4 deformation patterns in the multi-way loading forming process of cross valve, such as forward extrusion, backward extrusion, forward-lateral extrusion and backward-lateral extrusion; one or several patterns occur at different forming stages depending on loading path. In general, the main deformation pattern is forward extrusion or backward extrusion at the initial stage; the main deformation pattern is backward extrusion at the intermediate stage, and the backward extrusion and forward-lateral extrusion occur at the final stage. In order to improve the cavity fill and reduce the forming defects, the lateral extrusion deformation should be increased at the initial and intermediate stages, and the forward extrusion deformation at the final forging stage should be reduced or avoided.展开更多
The Power System Simulation Lab constructed specifically for the Three Gorges AC/DC hybrid transmissionstudy is equipped mainly with a real-time power system simulator, which can jointly operate with existing TNA andH...The Power System Simulation Lab constructed specifically for the Three Gorges AC/DC hybrid transmissionstudy is equipped mainly with a real-time power system simulator, which can jointly operate with existing TNA andHVDC Simulator respectively. Appraised by the State Power Corporation 3 years ago, this Lab was proved reachinginternational advanced level. Several large-scaled power system studies, such as the "Simplified Three Gorges PowerSystem Study" have achieved good results.[展开更多
Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM ...Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.展开更多
Most edge-detection methods rely on calculating gradient derivatives of the potential field, a process that is easily affected by noise and is therefore of low stability. We propose a new edge-detection method named c...Most edge-detection methods rely on calculating gradient derivatives of the potential field, a process that is easily affected by noise and is therefore of low stability. We propose a new edge-detection method named correlation coefficient of multidirectional standard deviations(CCMS) that is solely based on statistics. First, we prove the reliability of the proposed method using a single model and then a combination of models. The proposed method is evaluated by comparing the results with those obtained by other edge-detection methods. The CCMS method offers outstanding recognition, retains the sharpness of details, and has low sensitivity to noise. We also applied the CCMS method to Bouguer anomaly data of a potash deposit in Laos. The applicability of the CCMS method is shown by comparing the inferred tectonic framework to that inferred from remote sensing(RS) data.展开更多
The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformati...The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformation degree of 60%. A mathematical model was established to predict the stress—strain curves of this alloy during deformation. The experimental results show that the relationship between stress and strain is obviously affected by the strain rates and deformation temperatures. The flow stress of WE91 magnesium alloy during high temperature deformation can be represented by Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation, and the stress—strain curves obtained by the established model are in good agreement with the experimental results,which prove that the model reflects the real deformation characteristics of the WE91 alloy. The average deformation activation energy is 220 kJ/mol at strain of 0.1. The microstructures of WE91 during deformation processing are influenced by temperature and strain rates.展开更多
A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in ...A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in transverse. The additional shearing introduced by bending of fiber yarn is considered. The method to determine the microstructure is also discussed. This model is applied to the analysis of a 3-D woven graphite/epoxy composite. Micro stresses of the cell are studied, and then macro modulus is obtained by employing the average method. The predictions agree well with experimental results.展开更多
A kind of combining forecasting model based on the generalized weighted functional mean is proposed. Two kinds of parameter estimation methods with its weighting coefficients using the algorithm of quadratic programmi...A kind of combining forecasting model based on the generalized weighted functional mean is proposed. Two kinds of parameter estimation methods with its weighting coefficients using the algorithm of quadratic programming are given. The efficiencies of this combining forecasting model and the comparison of the two kinds of parameter estimation methods are demonstrated with an example. A conclusion is obtained, which is useful for the correct application of the above methods.展开更多
This paper presents an efficient way to implement an interpolation filter in a 20bit ∑-△ DAC with an oversampling ratio of 128. A multistage structure is used to reduce the complexity of filter coefficients and the ...This paper presents an efficient way to implement an interpolation filter in a 20bit ∑-△ DAC with an oversampling ratio of 128. A multistage structure is used to reduce the complexity of filter coefficients and the fi- nite word length effect. A novel method based on mixed-radix number representation is proposed to realize a poly- phase multiplier-free half-band subfilter with a high resolution. This approach reduces the complexity of the con- trol system and saves chip area dramatically. The IC is realized in a standard 0.13μm CMOS process and the inter- polation filter occupies less than 0.63mm^2 . This realization has desirable properties of regularity with simple hard- ware devices which are suitable for VLSI and can be applied to many other high resolution data converters.展开更多
The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used...The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used in several regions with different geological features: desert, saline-alkali farmland, and carbonate areas in mountainous regions in order to test their property indexes. Based on the geophone vibration equation and from the property index effects ofgeophone and the connection of the geophones on seismic data, we analyzed seismic data quality acquired inthe tested regions and suggest that suitable geophone property indexes, reasonable choice of geophone types, and the suitable geophone connection can enhance the signal/noise ratio of seismic data.展开更多
A general CFD-PBE(computational fluid dynamics-population balance equation) solver for gas–liquid poly-dispersed flows of both low and high gas volume fractions is developed in OpenFOAM(open-source field operation an...A general CFD-PBE(computational fluid dynamics-population balance equation) solver for gas–liquid poly-dispersed flows of both low and high gas volume fractions is developed in OpenFOAM(open-source field operation and manipulation) in this work. Implementation of this solver in OpenFOAM is illustrated in detail. The PBE is solved with the cell average technique. The coupling between pressure and velocity is dealt with the transient PIMPLE algorithm, which is a merged PISO-SIMPLE(pressure implicit split operator-semi-implicit method for pressure-linked equations) algorithm. Results show generally good agreement with the published experimental data, whereas the modeling precision could be improved further with more sophisticated closure models for interfacial forces, the models for the bubble-induced turbulence and those for bubble coalescence and breakage.The results also indicate that the PBE could be solved out the PIMPLE loop to save much computation time while still preserving the time information on variables. This is important for CFD-PBE modeling of many actual gas–liquid problems, which are commonly high-turbulent flows with intrinsic transient and 3 D characteristics.展开更多
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica...The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.展开更多
基金National Natural Science Foundation of China(Nos.51905089 and 52075093)Special Fund for Basic Research and Operating Costs of Central Colleges and Universities,China(No.22320D-31)Open Fund for National Key Laboratory of Tribology of Tsinghua University,China(No.SKLTKF20B05)。
文摘The flow field and flow state of thin-film evaporators are complex,and it is significant to effectively divide and quantify the flow field and flow state,as well as to study the internal flow field distribution and material mixing characteristics to improve the efficiency of thin-film evaporators.By using computational fluid dynamics(CFD)numerical simulation,the distribution pattern of the high-viscosity fluid flow field in the thin-film evaporators was obtained.It was found that the staggered interrupted blades could greatly promote material mixing and transportation,and impact the film formation of high-viscosity materials on the evaporator wall.Furthermore,a flow field state recognition method based on radial volume fraction statistics was proposed,and could quantitatively describe the internal flow field of thin-film evaporators.The method divides the high-viscosity materials in the thin-film evaporators into three flow states,the liquid film state,the exchange state and the liquid mass state.The three states of materials could be quantitatively described.The results show that the materials in the exchange state can connect the liquid film and the liquid mass,complete the material mixing and exchange,renew the liquid film,and maintain continuous and efficient liquid film evaporation.
基金Supported by the Civil Aviation Research Foundation of Nanjing University of Aeronautics and Astronautics~~
文摘The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the bypass ratio and the scarf angle on the mixing performance for the scarfed lobed mixer. Results show that the scarfed lobed mixer is reduced in the system weight. Meanwhile, aerodynamic performances are slightly improved compared with the normal lobed mixer. Two reasons for causing the mixing enhancement between the core and the bypass flow are as follows: (1) The stream-wise vortices shed from the training edge of the half/full scarfed lobed mixer earlier is enhanced by about 25%. (2) The mixing augmentation is also associated with the increase of the interface length caused by scarfing. The thermal mixing efficiency is enhanced with the increase of the bypass ratio and the scarfing angle. The scarfed lobed mixer design has no negative effects on the pressure loss. The total pressure recovery coefficient reaches above 0. 935 in various bypass ratios and scarfed angles. As the bypass ratio increases, the total pressure recovery coefficient also increases for the scarfed lobed mixer.
文摘To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively.
基金Project (GZ583) supported by the Sino-German Center for Science Promotion
文摘Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visualized material flow patterns, a three-dimensional model was developed to conduct the numerical simulation of the temperature profile and plastic material flow in friction stir welding. The calculated velocity contour of plastic flow in close proximity of the tool is generally consistent with the visualized results. As the tool rotation speed increases at a constant tool travel speed, the material flow near the pin gets stronger. The predicted shape and size of the weld nugget zone match with the experimentally measured ones.
文摘At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter.
基金Supported by the Science and Technology Support Key Project of 12th Five-Year of China(2011BAD20B00-4)~~
文摘The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms of wire-width compensation, extrusion velocity, filing velocity, and layer thickness are chosen as the control fac- tors. Robust design analysis and multi-index fuzzy comprehensive assessment method are used to obtain the opti- mal parameters. Results show that the influencing degrees of these four factors on the precision of as-processed parts are different. The optimizations of individual parameters and their combined effects are of the same impor- tance for a high precision manufacturing.
基金Project(2011YSKF01)supported by the Henan Key Laboratory of Advanced Non-ferrous Metals,ChinaProject(50905008)supported by the National Natural Science Foundation of China
文摘To accurately describe the mechanical properties of aluminium alloy sheet during deformation, an inverse identification was presented to deal with material parameters from the popular punch stretch test. In the identification procedure, the optimization strategy combines finite element method (FEM), Latin hypercube sampling (LHS), Kriging model and multi-island genetic algorithm (MIGA). The proposed approach is used on material parameter identification of aluminium alloy sheet 2D12. The anisotropic yield criterion Hill’90 is discussed. The results show that the Hill’90 anisotropic yield criterion with identified anisotropic material parameters has a good potential in describing the anisotropic behaviours. It provides a way to obtain the material parameters for FE simulations of sheet metal forming.
基金This work is supported by the National Natural Science Foundation of China (No.11402210), the Natural Science Foundation of Shanxi Province (No.2012011019-2), and the Doctoral Fund of Taiyuan University of Science and Technology (No.20152024).
文摘The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and most importantly, no paradoxical parameters appeared in the model. Moreover, it can simulate different microstructure patterns owing to the use of a new different free energy function for the simulation of morphologies of polymer. The new free energy function considers both the cases of T〈Tm and T≥Tm, which is more reasonable than that in published literatures that all ignored the T≥Tm case. In order to show the validity of the modified model, the finite difference method is used to solve the model and different crystallization morphologies during the solidification process of isotactic polystyrene are obtained under different conditions. Numerical results show that the growth rate of the initial secondary arms is obviously increased as the anisotropy strength increases. But the anisotropy strength seems to have no apparent effect on the global growth rate. The whole growth process of the dendrite depends mainly upon the latent heat and the latent heat has a direct effect on the tip radius and tip velocity of side branches.
基金Project(2011ZX04016-081)supported by the National Science and Technology Major Project of China
文摘The deformation characteristic in the forming process of aluminum alloy 7075 cross valve under multi-way loading was investigated by numerical simulation method. The results indicate that there exist 4 deformation patterns in the multi-way loading forming process of cross valve, such as forward extrusion, backward extrusion, forward-lateral extrusion and backward-lateral extrusion; one or several patterns occur at different forming stages depending on loading path. In general, the main deformation pattern is forward extrusion or backward extrusion at the initial stage; the main deformation pattern is backward extrusion at the intermediate stage, and the backward extrusion and forward-lateral extrusion occur at the final stage. In order to improve the cavity fill and reduce the forming defects, the lateral extrusion deformation should be increased at the initial and intermediate stages, and the forward extrusion deformation at the final forging stage should be reduced or avoided.
文摘The Power System Simulation Lab constructed specifically for the Three Gorges AC/DC hybrid transmissionstudy is equipped mainly with a real-time power system simulator, which can jointly operate with existing TNA andHVDC Simulator respectively. Appraised by the State Power Corporation 3 years ago, this Lab was proved reachinginternational advanced level. Several large-scaled power system studies, such as the "Simplified Three Gorges PowerSystem Study" have achieved good results.[
基金The US National Science Foundation (No. CMMI-0408390,CMMI-0644552)the American Chemical Society Petroleum Research Foundation (No.PRF-44468-G9)+3 种基金the Research Fellowship for International Young Scientists (No.51050110143)the Fok Ying-Tong Education Foundation (No.114024)the Natural Science Foundation of Jiangsu Province (No.BK2009015)the Postdoctoral Science Foundation of Jiangsu Province (No.0901005C)
文摘Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.
基金supported by the National Hi-Tech Research and Development Program of China(863 Program)(No.2006AA06Z107)the National Natural Science Foundation of China(No.40930314)
文摘Most edge-detection methods rely on calculating gradient derivatives of the potential field, a process that is easily affected by noise and is therefore of low stability. We propose a new edge-detection method named correlation coefficient of multidirectional standard deviations(CCMS) that is solely based on statistics. First, we prove the reliability of the proposed method using a single model and then a combination of models. The proposed method is evaluated by comparing the results with those obtained by other edge-detection methods. The CCMS method offers outstanding recognition, retains the sharpness of details, and has low sensitivity to noise. We also applied the CCMS method to Bouguer anomaly data of a potash deposit in Laos. The applicability of the CCMS method is shown by comparing the inferred tectonic framework to that inferred from remote sensing(RS) data.
基金Projects(2007CB613704,2007CB613705)supported by the National Basic Research Program of China
文摘The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformation degree of 60%. A mathematical model was established to predict the stress—strain curves of this alloy during deformation. The experimental results show that the relationship between stress and strain is obviously affected by the strain rates and deformation temperatures. The flow stress of WE91 magnesium alloy during high temperature deformation can be represented by Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation, and the stress—strain curves obtained by the established model are in good agreement with the experimental results,which prove that the model reflects the real deformation characteristics of the WE91 alloy. The average deformation activation energy is 220 kJ/mol at strain of 0.1. The microstructures of WE91 during deformation processing are influenced by temperature and strain rates.
文摘A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in transverse. The additional shearing introduced by bending of fiber yarn is considered. The method to determine the microstructure is also discussed. This model is applied to the analysis of a 3-D woven graphite/epoxy composite. Micro stresses of the cell are studied, and then macro modulus is obtained by employing the average method. The predictions agree well with experimental results.
文摘A kind of combining forecasting model based on the generalized weighted functional mean is proposed. Two kinds of parameter estimation methods with its weighting coefficients using the algorithm of quadratic programming are given. The efficiencies of this combining forecasting model and the comparison of the two kinds of parameter estimation methods are demonstrated with an example. A conclusion is obtained, which is useful for the correct application of the above methods.
文摘This paper presents an efficient way to implement an interpolation filter in a 20bit ∑-△ DAC with an oversampling ratio of 128. A multistage structure is used to reduce the complexity of filter coefficients and the fi- nite word length effect. A novel method based on mixed-radix number representation is proposed to realize a poly- phase multiplier-free half-band subfilter with a high resolution. This approach reduces the complexity of the con- trol system and saves chip area dramatically. The IC is realized in a standard 0.13μm CMOS process and the inter- polation filter occupies less than 0.63mm^2 . This realization has desirable properties of regularity with simple hard- ware devices which are suitable for VLSI and can be applied to many other high resolution data converters.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2007CB209603)
文摘The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used in several regions with different geological features: desert, saline-alkali farmland, and carbonate areas in mountainous regions in order to test their property indexes. Based on the geophone vibration equation and from the property index effects ofgeophone and the connection of the geophones on seismic data, we analyzed seismic data quality acquired inthe tested regions and suggest that suitable geophone property indexes, reasonable choice of geophone types, and the suitable geophone connection can enhance the signal/noise ratio of seismic data.
基金Supported by the National Key Research and Development Program(2016YFB0301702)National Natural Science Foundation of China(21776284,21476236)+1 种基金Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-JSC030)Jiangsu National Synergetic Innovation Center for Advanced Materials
文摘A general CFD-PBE(computational fluid dynamics-population balance equation) solver for gas–liquid poly-dispersed flows of both low and high gas volume fractions is developed in OpenFOAM(open-source field operation and manipulation) in this work. Implementation of this solver in OpenFOAM is illustrated in detail. The PBE is solved with the cell average technique. The coupling between pressure and velocity is dealt with the transient PIMPLE algorithm, which is a merged PISO-SIMPLE(pressure implicit split operator-semi-implicit method for pressure-linked equations) algorithm. Results show generally good agreement with the published experimental data, whereas the modeling precision could be improved further with more sophisticated closure models for interfacial forces, the models for the bubble-induced turbulence and those for bubble coalescence and breakage.The results also indicate that the PBE could be solved out the PIMPLE loop to save much computation time while still preserving the time information on variables. This is important for CFD-PBE modeling of many actual gas–liquid problems, which are commonly high-turbulent flows with intrinsic transient and 3 D characteristics.
基金Project(51605234)supported by the National Natural Science Foundation of ChinaProjects(2019JJ50510,2019JJ70077)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(18B285,18B552)supported by Scientific Research Fund of Hunan Provincial Education Department,China。
文摘The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.