The cold semi-precision forging of a multi-row sprocket was investigated using upper-bound (UB) and finite element methods combined with experiments. Based on the design of a new tooth profile for the sprocket, a co...The cold semi-precision forging of a multi-row sprocket was investigated using upper-bound (UB) and finite element methods combined with experiments. Based on the design of a new tooth profile for the sprocket, a cold semi-precision forging process and a kinematically admissible velocity field for filling the die cavity were proposed. Using the UB method, the velocity fields of the sprocket billet in the forming process were divided theoretically and calculated. The process of forging a multi-row sprocket was simulated using the FEM package Deform-3D V6.1 to obtain the distributions of the velocity field and the effective stress field in filling the die cavity. Similar to the simulated results, the experiment on cold forging a 5052 aluminum alloy sprocket was successfully performed. By comparing the calculated (UB method), experimental and simulated load-stroke curves, the calculated and simulated results were basically in accordance with the experimental results. The study provides a theoretical foundation for the development of the precision forging of multi-row sprockets.展开更多
Spur dike is one of the river training structures. This work presented a numerical simulation of flow field and three-dimensional velocity around a T-shaped spur dike located in bend using SSIIM model. The main object...Spur dike is one of the river training structures. This work presented a numerical simulation of flow field and three-dimensional velocity around a T-shaped spur dike located in bend using SSIIM model. The main objective of this work is to investigate the three-dimensional velocities and streamlines at transverse and longitudinal sections and plan views around the T-shaped spur dike in different submergence ratios(0, 5%, 15%, 25% and 50%). It is concluded that by increasing the submergence ratio from 5% to 50%, the maximum of scour is reduced; the maximum of longitudinal velocity increases by 7.7% and occurs at the water surface in spur dike axis. Near the bed, the maximum of vertical velocity occurs at the end of spur wing. By analyzing the streamlines at transverse sections, the followings were deduced for different submergence ratios: different dimensions and different positions of vortices around the spur dike.展开更多
Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity ...Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity systems when the structural rigidity is modified. Numerical results are constructed using ANSYS software with triangular finite elements for both the fluid (2D acoustic elements) and the solid (plane stress) domains. These former results are compared to proposed analytical expressions, showing an alternative benchmark tool for the analyst. Very rigid wall structures imply in frequencies and mode shapes almost identical to those achieved for an acoustic cavity with Neumann boundary condition at the interface. In this case, the wall behaves as rigid and fluid-structure system mode shapes are similar to those achieved for the uncoupled reservoir case.展开更多
in geotechnical engineering, numerical simulation of problems is of great importance. This work proposes a new formulation of coupled finite-infinite elements which can be used in numerical simulation ofgeotechnical p...in geotechnical engineering, numerical simulation of problems is of great importance. This work proposes a new formulation of coupled finite-infinite elements which can be used in numerical simulation ofgeotechnical problems in both static and dynamic conditions. Formulation and various implementation aspects of the proposed coupled finite-infinite elements are carefully discussed. To the authors' knowledge, this approach that considers coupled finite-infinite elements is more efficient in the sense that appropriate and accurate results are obtained by using less elements. The accuracy and efficiency of the proposed approach is considered by comparing the obtained results with analytical and numerical results. In a static case, the problem of circular domain ol infinite length is considered. In a dynamic case, one dimensional wave propagation problems arising from the Heaviside step fimction and impulse functions are considered. In order to get a more complete picture, two dimensional wave propagation in a circular qtmrter space is considered and the results are presented. Finally, a soil-structure interaction system subjected to seismic excitation is analyzed. In the analysis of soil-structure interaction phenomenon, frames with different number of storeys and soil media with various stiffness characteristics have been taken into consideration. In the analysis, the finite element software ANSYS has been used. For the newly developed infinite element, the programming has been done by the help of the User Programmable Features of the ANSYS software, which enable creating new elements in the ANSYS software.展开更多
In this paper, a theoretical and numerical study on the impact of a rubber solid on the free surface of a granular plate is presented, showing a simulation of an aircraft wheel on impact with a flexible landing surfac...In this paper, a theoretical and numerical study on the impact of a rubber solid on the free surface of a granular plate is presented, showing a simulation of an aircraft wheel on impact with a flexible landing surface. This physical action, when we use a theological approach, becomes a fundamental parameter to investigate wear and tear, and consequently strength to micro and macro pavements failure. The study has developed initially from a microscopic point of view and subsequently on macroscale. The effects are strictly linked with material degradation associated with damage evolution. The problem is developed by energetic approach on an elastic-plastic element using the functional energy containing two contributions, bulk and surface. The model simulates the behaviour of flexible runway pavements during the landing phase.展开更多
In this paper, wave focusing based on a coordinate transformation is proposed. It is known that the 2-dimensional wave equation which governs a shallow water problem in a potential theory can keep invariance under coo...In this paper, wave focusing based on a coordinate transformation is proposed. It is known that the 2-dimensional wave equation which governs a shallow water problem in a potential theory can keep invariance under coordinate transformation. Once equivalent medium parameters are obtained so as to keep the invariance, wave rays can be arbitrarily designed. We show the design of equivalent medium for wave squeezing to focus waves on a specific domain. Numerical computations are carried out by a finite element based software COMSOL Multiphysics. Results show good agreement between predictions from the theory and computations. It can be applied for a wide range of frequency because the proposed method is able to be applied regardless of the frequency.展开更多
Recent experimental and numerical investigations reveal that the onset of turbulence in plane-Poiseuille flow and planeCouette flow has some similar stages separated with different threshold Reynolds numbers.Based on ...Recent experimental and numerical investigations reveal that the onset of turbulence in plane-Poiseuille flow and planeCouette flow has some similar stages separated with different threshold Reynolds numbers.Based on these observations and the energy equation of a disturbed fluid element,a local Reynolds number Re L is derived to represent the maximum ratio of the energy supplement to the energy dissipation in a cross section.It is shown that along the sequence of transition stages,which include transient localized turbulence,"equilibrium" localized turbulence,spatially intermittent but temporally persistent turbulence and uniform turbulence,the corresponding thresholds of Re L for plane-Couette flow,Hagen-Poiseuille flow and plane-Poiseuille flow are consistent,indicating that the critical(threshold) states during the laminar-turbulent transition are determined by the local properties of the base flow and are independent of global features,such as flow geometries(pipe or channel) and types of driving forces(shear driving or pressure driving).展开更多
In a recent article, the authors provided an effective algorithm for both computing the global infimum of f and deciding whether or not the infimum of f is attained, where f is a multivariate polynomial over the field...In a recent article, the authors provided an effective algorithm for both computing the global infimum of f and deciding whether or not the infimum of f is attained, where f is a multivariate polynomial over the field R of real numbers. As a complement, the authors investigate the semi- algebraically connected components of minimum points of a polynomial function in this paper. For a given multivariate polynomial f over R, it is shown that the above-mentioned algorithm can find at least one point in each semi-algebraically connected component of minimum points of f whenever f has its global minimum.展开更多
Boiling heat transfer condition has significance for pool-type research reactors cooled by natural circulation.It has important effect on the fuel element safety of reactor.On the basis of heat transfer characteristic...Boiling heat transfer condition has significance for pool-type research reactors cooled by natural circulation.It has important effect on the fuel element safety of reactor.On the basis of heat transfer characteristics of the Xi'an pulsed reactor(XAPR),fuel conduction,single-phase convection and boiling heat transfer,and void fraction models of the core are constructed.To validate the correctness of the physical models presented in the paper,numerical calculation based on a subchannel analysis method of XAPR is carried out,and the temperature fields are measured in some reactor coolant channels.The comparison between the calculated and experimental results verifies the effectiveness of the models.These physical models are used to calculate the thermal-hydraulic parameters of XAPR at the rated power(for XAPR the rated power is 2.0 MW in steady-state operation).The results indicate that subcooled boiling occurs in the XAPR core but it exhibits a subcooling degree which is considerably higher than that of saturation boiling.Subcooled boiling improves the efficiency of heat transfer between the fuel element surface and coolant,as well as effectively protects fuel elements.This research is also a beneficial reference in thermal-hydraulic analysis for other natural circulation reactors.展开更多
文摘The cold semi-precision forging of a multi-row sprocket was investigated using upper-bound (UB) and finite element methods combined with experiments. Based on the design of a new tooth profile for the sprocket, a cold semi-precision forging process and a kinematically admissible velocity field for filling the die cavity were proposed. Using the UB method, the velocity fields of the sprocket billet in the forming process were divided theoretically and calculated. The process of forging a multi-row sprocket was simulated using the FEM package Deform-3D V6.1 to obtain the distributions of the velocity field and the effective stress field in filling the die cavity. Similar to the simulated results, the experiment on cold forging a 5052 aluminum alloy sprocket was successfully performed. By comparing the calculated (UB method), experimental and simulated load-stroke curves, the calculated and simulated results were basically in accordance with the experimental results. The study provides a theoretical foundation for the development of the precision forging of multi-row sprockets.
文摘Spur dike is one of the river training structures. This work presented a numerical simulation of flow field and three-dimensional velocity around a T-shaped spur dike located in bend using SSIIM model. The main objective of this work is to investigate the three-dimensional velocities and streamlines at transverse and longitudinal sections and plan views around the T-shaped spur dike in different submergence ratios(0, 5%, 15%, 25% and 50%). It is concluded that by increasing the submergence ratio from 5% to 50%, the maximum of scour is reduced; the maximum of longitudinal velocity increases by 7.7% and occurs at the water surface in spur dike axis. Near the bed, the maximum of vertical velocity occurs at the end of spur wing. By analyzing the streamlines at transverse sections, the followings were deduced for different submergence ratios: different dimensions and different positions of vortices around the spur dike.
文摘Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity systems when the structural rigidity is modified. Numerical results are constructed using ANSYS software with triangular finite elements for both the fluid (2D acoustic elements) and the solid (plane stress) domains. These former results are compared to proposed analytical expressions, showing an alternative benchmark tool for the analyst. Very rigid wall structures imply in frequencies and mode shapes almost identical to those achieved for an acoustic cavity with Neumann boundary condition at the interface. In this case, the wall behaves as rigid and fluid-structure system mode shapes are similar to those achieved for the uncoupled reservoir case.
文摘in geotechnical engineering, numerical simulation of problems is of great importance. This work proposes a new formulation of coupled finite-infinite elements which can be used in numerical simulation ofgeotechnical problems in both static and dynamic conditions. Formulation and various implementation aspects of the proposed coupled finite-infinite elements are carefully discussed. To the authors' knowledge, this approach that considers coupled finite-infinite elements is more efficient in the sense that appropriate and accurate results are obtained by using less elements. The accuracy and efficiency of the proposed approach is considered by comparing the obtained results with analytical and numerical results. In a static case, the problem of circular domain ol infinite length is considered. In a dynamic case, one dimensional wave propagation problems arising from the Heaviside step fimction and impulse functions are considered. In order to get a more complete picture, two dimensional wave propagation in a circular qtmrter space is considered and the results are presented. Finally, a soil-structure interaction system subjected to seismic excitation is analyzed. In the analysis of soil-structure interaction phenomenon, frames with different number of storeys and soil media with various stiffness characteristics have been taken into consideration. In the analysis, the finite element software ANSYS has been used. For the newly developed infinite element, the programming has been done by the help of the User Programmable Features of the ANSYS software, which enable creating new elements in the ANSYS software.
文摘In this paper, a theoretical and numerical study on the impact of a rubber solid on the free surface of a granular plate is presented, showing a simulation of an aircraft wheel on impact with a flexible landing surface. This physical action, when we use a theological approach, becomes a fundamental parameter to investigate wear and tear, and consequently strength to micro and macro pavements failure. The study has developed initially from a microscopic point of view and subsequently on macroscale. The effects are strictly linked with material degradation associated with damage evolution. The problem is developed by energetic approach on an elastic-plastic element using the functional energy containing two contributions, bulk and surface. The model simulates the behaviour of flexible runway pavements during the landing phase.
文摘In this paper, wave focusing based on a coordinate transformation is proposed. It is known that the 2-dimensional wave equation which governs a shallow water problem in a potential theory can keep invariance under coordinate transformation. Once equivalent medium parameters are obtained so as to keep the invariance, wave rays can be arbitrarily designed. We show the design of equivalent medium for wave squeezing to focus waves on a specific domain. Numerical computations are carried out by a finite element based software COMSOL Multiphysics. Results show good agreement between predictions from the theory and computations. It can be applied for a wide range of frequency because the proposed method is able to be applied regardless of the frequency.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10972007 and 10921202) and (Grant No.2009CB724100)
文摘Recent experimental and numerical investigations reveal that the onset of turbulence in plane-Poiseuille flow and planeCouette flow has some similar stages separated with different threshold Reynolds numbers.Based on these observations and the energy equation of a disturbed fluid element,a local Reynolds number Re L is derived to represent the maximum ratio of the energy supplement to the energy dissipation in a cross section.It is shown that along the sequence of transition stages,which include transient localized turbulence,"equilibrium" localized turbulence,spatially intermittent but temporally persistent turbulence and uniform turbulence,the corresponding thresholds of Re L for plane-Couette flow,Hagen-Poiseuille flow and plane-Poiseuille flow are consistent,indicating that the critical(threshold) states during the laminar-turbulent transition are determined by the local properties of the base flow and are independent of global features,such as flow geometries(pipe or channel) and types of driving forces(shear driving or pressure driving).
基金supported by the National Natural Science Foundation of China under Grant No.11161034the Science Foundation of the Education Department of Jiangxi Province under Grant No.Gjj12012
文摘In a recent article, the authors provided an effective algorithm for both computing the global infimum of f and deciding whether or not the infimum of f is attained, where f is a multivariate polynomial over the field R of real numbers. As a complement, the authors investigate the semi- algebraically connected components of minimum points of a polynomial function in this paper. For a given multivariate polynomial f over R, it is shown that the above-mentioned algorithm can find at least one point in each semi-algebraically connected component of minimum points of f whenever f has its global minimum.
文摘Boiling heat transfer condition has significance for pool-type research reactors cooled by natural circulation.It has important effect on the fuel element safety of reactor.On the basis of heat transfer characteristics of the Xi'an pulsed reactor(XAPR),fuel conduction,single-phase convection and boiling heat transfer,and void fraction models of the core are constructed.To validate the correctness of the physical models presented in the paper,numerical calculation based on a subchannel analysis method of XAPR is carried out,and the temperature fields are measured in some reactor coolant channels.The comparison between the calculated and experimental results verifies the effectiveness of the models.These physical models are used to calculate the thermal-hydraulic parameters of XAPR at the rated power(for XAPR the rated power is 2.0 MW in steady-state operation).The results indicate that subcooled boiling occurs in the XAPR core but it exhibits a subcooling degree which is considerably higher than that of saturation boiling.Subcooled boiling improves the efficiency of heat transfer between the fuel element surface and coolant,as well as effectively protects fuel elements.This research is also a beneficial reference in thermal-hydraulic analysis for other natural circulation reactors.