[Objective] The aim was to research relationship between SPAD decline index after full-heading stage (SDIFHS) and productivity of rice. fertilized with nitro- gen in order to provide theoretical and practical refere...[Objective] The aim was to research relationship between SPAD decline index after full-heading stage (SDIFHS) and productivity of rice. fertilized with nitro- gen in order to provide theoretical and practical references for selection and breed- ing of rice varieties. [Method] From 2008 to 2010, 18 mid-season hybrid rice vari- eties were researched every year to explore relationship' between SDIFHS and pro- ductivity of rice fertilized with nitrogen. [Result] The productivity of rice fertilized with nitrogen was of extremely significant positive corretation with SDIFHS, because the higher SPAD decline index is, the higher LAI decline index and the transformation ratio of dry matter to spikes in overground plant would be. [Conclusion] The re- search established a new method to predict productivity of rice fertilized with nitro- gen based on SPAD decline index.展开更多
The parabolic Radon transform has been widely used in multiple attenuation. To further improve the accuracy and efficiency of the Radon transform, we developed the 2- fdomain high-resolution Radon transform based on t...The parabolic Radon transform has been widely used in multiple attenuation. To further improve the accuracy and efficiency of the Radon transform, we developed the 2- fdomain high-resolution Radon transform based on the fast and modified parabolic Radon transform presented by Abbad. The introduction of a new variable 2 makes the transform operator frequency-independent. Thus, we need to calculate the transform operator and its inverse operator only once, which greatly improves the computational efficiency. Besides, because the primaries and multiples are distributed on straight lines with different slopes in the 2-fdomain, we can easily choose the filtering operator to suppress the multiples. At the same time, the proposed method offers the advantage of high-resolution Radon transform, which can greatly improve the precision of attenuating the multiples. Numerical experiments suggest that the multiples are well suppressed and the amplitude versus offset characteristics of the primaries are well maintained. Real data processing results further verify the effectiveness and feasibility of the method.展开更多
A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the h...A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the huge computing resource requirement is identified as the need to solve the cathode O2 transport and the associated electrochemistry. To overcome the technical obstacle, an analytical model for solving the O2 transport and its coupling with the electrochemistry is derived. The analytical model is used to greatly reduce the numerical mesh complexity of a multiphysics model. Numerical test shows that the analytical approximation is highly accurate and stable. A multiphysics numerical modeling tool taking advantage of the analytical solution is then developed through Fluent@. The numerical efficiency and stability of this modeling tool are further demonstrated by simulating a 30- cell stack with a production scale cell size. Detailed information about the stack performance is revealed and briefly discussed. The multiphysics modeling tool can be used to guide the stack design and select the operating parameters.展开更多
Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the...Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the mixing efficiency in the cases with different Reynolds number and different fabricated mixers. The results show that the efficiency of liquid mixing is progressively dependent on the convective transport as the Reynolds number increases. The efficiency of serpentine microchannel decreases with the increasing Reynolds number in the laminar regime. Altering the aspect ratio of channel inlet section has no significant effect on the mixing efficiency. Increasing the area of channel inlet section will cause the decrease of the mixing efficiency. The mixing in serpentine channels is the most efficient among three different mixers because of the existence of second flow introduced by its special structure.展开更多
The stretching and folding of fluid element during chaotic mixing field is studied using numerical method. The chaotic mixing process is caused by periodic secondary flow in a twisted curved pipe. Using the nonlinea...The stretching and folding of fluid element during chaotic mixing field is studied using numerical method. The chaotic mixing process is caused by periodic secondary flow in a twisted curved pipe. Using the nonlinear discrete velocity field as the dynamical system, the present study connects the fluid particle's stretching along its trajectory in one period to a linearized time-varying variational equation. After numerical approximation of the variational equation, fluid stretching is calculated on the whole cross section. The stretching distribution shows an exponential fluid stretching and folding, which indicates an excellent mixing performance.展开更多
The micro-combustion chamber is the key component for micro-TPV systems. To improve the combustor wall temperature level and its uniformity and efficiency, an improved flat micro-combustor with a front cavity is built...The micro-combustion chamber is the key component for micro-TPV systems. To improve the combustor wall temperature level and its uniformity and efficiency, an improved flat micro-combustor with a front cavity is built, and the combustion performance of the original and improved combustors of premixed H2/air flames under various inlet velocities and equivalence ratios is numerically investigated. The effects of the front cavity height and length on the outer wall temperature and efficiency are also discussed. The front cavity significantly improves the average outer wall temperature, outer wall temperature uniformity, and combustion efficiency of the micro-combustor, increases the area of the high temperature zone, and enhances the heat transfer between the burned blends and inner walls. The micro-combustor with the front cavity length of 2.0 mm and height of 0.5 mm is suitable for micro-TPV system application due to the relatively high outer wall temperature, combustion efficiency, and the most uniform outer wall temperature.展开更多
Plasma jet has been widely used in supersonic combustor as an effective ignition and combustion assisted method,but currently it is mostly combined with the traditional wall fuel injection method,while the application...Plasma jet has been widely used in supersonic combustor as an effective ignition and combustion assisted method,but currently it is mostly combined with the traditional wall fuel injection method,while the application combined with the central fuel injection method is less.In order to expand the combustion range,the plasma jet was introduced into a strut-cavity combustor with an alternating-wedge.The effects of total pressure of strut fuel injection,total pressure of cavity fuel injection,total pressure of plasma jet injection and plasma jet media on the combustion characteristics were analyzed in supersonic flow by numerical calculations in a three-dimensional domain.The combustion field structure,wall pressure distribution,combustion efficiency and distribution of H2O at the exit of the combustor with different injection conditions were analyzed.The results show that the combustion efficiency decreases with the increase of the strut fuel injection total pressure.However,the combustion area downstream increases when the total pressure of the strut fuel injection increases within the proper range.The combustion range is expanded and the combustion efficiency is improved when the cavity fuel injection total pressure is increased within the range of 0.5−2.0 MPa,but a sharp drop in combustion efficiency can be found due to limited fuel mixing when the total injection pressure of the cavity fuel is excessively increased.With the increased total injection pressure of the plasma jet,the height of the cavity shear layer is raised and the equivalence ratio of the gas mixture in the cavity is improved.When the total pressure of the plasma jet is 1.25 MPa,the combustion efficiency reaches a maximum of 82.1%.The combustion-assisted effect of different plasma jet media is significantly different.When the medium of the plasma jet is O2,the combustion-assisted effect on the combustor is most significant.展开更多
Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in s...Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in separating large droplets, while droplet turbulence dispersion plays a decisive role in separating fine droplets. Good agreement exists between calculations and air-water experiments. The numerical method developed provides a rea-sonable description of the droplet trajectories and separating efficiency, and it can be applied to predicting the performance of gas-water separator with corrugated plates.展开更多
A numerical study of bitubular tubes with diaphragms compared with single and bitubular tubes subjected to dynamic axial impact force was presented. At first, the energy absorption response of the composite structure ...A numerical study of bitubular tubes with diaphragms compared with single and bitubular tubes subjected to dynamic axial impact force was presented. At first, the energy absorption response of the composite structure under axial loading was analyzed by finite element simulation. The results show that the efficiency of energy absorption can be improved by introducing diaphragms to the double-walled columns. Then, the effect of the amount and location of diaphragms, the shape and the size of the inner tubes, and the thickness of the composite structures were also studied numerically. The collision performance of the composite structure is affected by the deformation of diaphragms, as well as the interaction of outer and inner tube. The non-uniform distribution of diaphragms can improve the energy absorption efficiency of structures for a constant number of diaphragms. The specific energy absorption of the hexagonal inner tube is the highest, followed by the circular, octagonal and square ones.展开更多
Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown o...Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown of work rolls was established using finite difference method to study roll's thermal deformation.Based on simulation results,the influences of control-efficiency factors on thermal crown are presented and the thermal crown of work rolls is analyzed after taking sub-cooling of sprinkling beam into consideration.It has been found that the control-efficiency factor of any position on the roll's surface is linear function of the temperature and the control ability of water temperature is stronger than other control parameters.In addition,the verification of the model has been carried out based on the producing technology data in some factories and the numerical simulation results coincide well with the experimental data.Therefore,this work has important value for on-line control of roll's crown in cold rolling.展开更多
In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber...In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions.展开更多
The spacing–burden(S/B) ratio plays significant role on rock fragmentation and proper utilization of explosive energy to minimize the undesirable damage.Low S/B ratio generates fine fragments due to pressure rings co...The spacing–burden(S/B) ratio plays significant role on rock fragmentation and proper utilization of explosive energy to minimize the undesirable damage.Low S/B ratio generates fine fragments due to pressure rings coalescence of two blast holes,whereas boulder generations were observed above optimum S/B ratio.Both conditions are not acceptable because of wastage of explosive energy.Therefore,to resolve this issue,a numerical model study was conducted to optimize the S/B ratio and to envisage its effect on rock fragmentation based on utilization of explosive energy.Finite element simulation tool was used to see the extent of two blast hole influence area variation with varying S/B ratio.The better results were obtained at S/B ratio of 1:2 with optimum utilization of peak explosive energy.The performance was observed based on peak kinetic energy,peak pressure,radial and hoop stresses on centre of the two blast holes,where pressure rings coalescence.展开更多
The gas/liquid spiral separator, a key component in the compressed air system, was used to remove liquid and oil from gas stream by centrifugal and gravitational forces. To optimize the design of the separator,the rel...The gas/liquid spiral separator, a key component in the compressed air system, was used to remove liquid and oil from gas stream by centrifugal and gravitational forces. To optimize the design of the separator,the relationship between the performance and structural parameters of separators is studied. Computational fluid dynamics (CFD) method is employed to simulate the flow fields and calculate the pressure drop and separation efficiency of air-liquid spiral separators with different structural parameters. The RSM (Reynolds stress model)turbulence model is used to analyze the highly swirling flow fields while the stochastic trajectory model is used to simulate the traces of liquid droplets in the flow field. A simplified calculation formula of pressure drop in spiral structures is obtained by modifying Darcy's equation and verified by experiment.展开更多
Coalbed methane(CBM) commercial development requires choosing the arrangement of the wells.This should be done by considering the corresponding input-output(investment-profit) efficiencies.Simulations were obtained fr...Coalbed methane(CBM) commercial development requires choosing the arrangement of the wells.This should be done by considering the corresponding input-output(investment-profit) efficiencies.Simulations were obtained from the computer modeling group(CMG) given the reservoir conditions of the Panzhuang block in the southern part of the Qinshui Basin.This is a demonstration region for CBM development located in Shanxi province of northern China.The sensitivity of gas production from a single vertical well to the primary reservoir parameters was estimated first.Then multi-well gas production from three different well patterns was simulated to estimate the most appropriate well spacing.Combining the investment requirements then gave investment-profit efficiencies for these well patterns.A data envelopment analysis(DEA) model was used to optimize the efficiency.The results show that the permeability,the reservoir pressure,and the gas content have an evident impact on single well gas production.The desorption time has little or no affect on production.The equilateral triangular well pattern(ETWP) in a 400 m well spacing is,for multi-well development,the optimal pattern.It has a better input-output ratio,a longer stable yield time,and provides for greater CBM recovery than does either the rectangular well pattern(RWP) or the five point well pattern(FPWP).展开更多
In this research,the thermal performance of a single U-tube vertical ground heat exchanger is evaluated numerically as a function of the most influential flow parameters,namely,the soil porosity,volumetric heat capaci...In this research,the thermal performance of a single U-tube vertical ground heat exchanger is evaluated numerically as a function of the most influential flow parameters,namely,the soil porosity,volumetric heat capacity,and thermal conductivity of the backfill material,inlet volume flow rate,and inlet fluid temperature.The results are discussed in terms of the variations of the heat exchange rate,the effective thermal resistance,and the effectiveness of the ground heat exchanger.They show that the inlet volume flow rate,inlet fluid temperature,and backfill material thermal conductivity have significant effects on the thermal performance of the ground heat exchanger,such that by decreasing the inlet volume flow rate and increasing the backfill material thermal conductivity and inlet fluid temperature,the outlet fluid temperature decreases considerably.On the contrary,the soil porosity and backfill material volumetric heat capacity have negligible effects on the studied ground heat exchanger’s thermal performance.The lowest inlet fluid temperature reaches a the maximum effective thermal resistance of borehole and soil,and consequently the minimum heat transfer rate and effectiveness.Also,multilinear regression analyses are performed to determine the most feasible models able to predict the thermal properties of the single U-tube ground heat exchanger.展开更多
基金Supported by Southuest China Rice Innovation System and Crop High-yielding Project by Science and Technology (2011BAD02A05) Transformation Project of Agricultural Fruits into Capitals (2006GB2F000256)+2 种基金Sichuan Academic Leaders Training FundSichuan Rice Cultivation Key ProjectSichuan Financial Distribution Project~~
文摘[Objective] The aim was to research relationship between SPAD decline index after full-heading stage (SDIFHS) and productivity of rice. fertilized with nitro- gen in order to provide theoretical and practical references for selection and breed- ing of rice varieties. [Method] From 2008 to 2010, 18 mid-season hybrid rice vari- eties were researched every year to explore relationship' between SDIFHS and pro- ductivity of rice fertilized with nitrogen. [Result] The productivity of rice fertilized with nitrogen was of extremely significant positive corretation with SDIFHS, because the higher SPAD decline index is, the higher LAI decline index and the transformation ratio of dry matter to spikes in overground plant would be. [Conclusion] The re- search established a new method to predict productivity of rice fertilized with nitro- gen based on SPAD decline index.
基金sponsored by the National 973 Program(No.2011CB202402)the National Natural Science Foundation of China(No.41104069)the Fundamental Research Funds for the Central Universities(No.14CX06017A)
文摘The parabolic Radon transform has been widely used in multiple attenuation. To further improve the accuracy and efficiency of the Radon transform, we developed the 2- fdomain high-resolution Radon transform based on the fast and modified parabolic Radon transform presented by Abbad. The introduction of a new variable 2 makes the transform operator frequency-independent. Thus, we need to calculate the transform operator and its inverse operator only once, which greatly improves the computational efficiency. Besides, because the primaries and multiples are distributed on straight lines with different slopes in the 2-fdomain, we can easily choose the filtering operator to suppress the multiples. At the same time, the proposed method offers the advantage of high-resolution Radon transform, which can greatly improve the precision of attenuating the multiples. Numerical experiments suggest that the multiples are well suppressed and the amplitude versus offset characteristics of the primaries are well maintained. Real data processing results further verify the effectiveness and feasibility of the method.
基金This work is supported the National Natural Science Foundation of China (No. 11374272 and No. 11574284), the National Basic Research Program of China (No.2012CB215405) and Collaborative Innovation Center of Suzhou Nano Science and Technology are gratefully acknowledged.
文摘A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the huge computing resource requirement is identified as the need to solve the cathode O2 transport and the associated electrochemistry. To overcome the technical obstacle, an analytical model for solving the O2 transport and its coupling with the electrochemistry is derived. The analytical model is used to greatly reduce the numerical mesh complexity of a multiphysics model. Numerical test shows that the analytical approximation is highly accurate and stable. A multiphysics numerical modeling tool taking advantage of the analytical solution is then developed through Fluent@. The numerical efficiency and stability of this modeling tool are further demonstrated by simulating a 30- cell stack with a production scale cell size. Detailed information about the stack performance is revealed and briefly discussed. The multiphysics modeling tool can be used to guide the stack design and select the operating parameters.
基金Supported by the National Natural Science Foundation of China (No. 20299030).
文摘Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the mixing efficiency in the cases with different Reynolds number and different fabricated mixers. The results show that the efficiency of liquid mixing is progressively dependent on the convective transport as the Reynolds number increases. The efficiency of serpentine microchannel decreases with the increasing Reynolds number in the laminar regime. Altering the aspect ratio of channel inlet section has no significant effect on the mixing efficiency. Increasing the area of channel inlet section will cause the decrease of the mixing efficiency. The mixing in serpentine channels is the most efficient among three different mixers because of the existence of second flow introduced by its special structure.
基金Supported by the National Natural Science Foundation of China(No.29776039).
文摘The stretching and folding of fluid element during chaotic mixing field is studied using numerical method. The chaotic mixing process is caused by periodic secondary flow in a twisted curved pipe. Using the nonlinear discrete velocity field as the dynamical system, the present study connects the fluid particle's stretching along its trajectory in one period to a linearized time-varying variational equation. After numerical approximation of the variational equation, fluid stretching is calculated on the whole cross section. The stretching distribution shows an exponential fluid stretching and folding, which indicates an excellent mixing performance.
基金Project(11802336) supported by the National Natural Science Foundation of China
文摘The micro-combustion chamber is the key component for micro-TPV systems. To improve the combustor wall temperature level and its uniformity and efficiency, an improved flat micro-combustor with a front cavity is built, and the combustion performance of the original and improved combustors of premixed H2/air flames under various inlet velocities and equivalence ratios is numerically investigated. The effects of the front cavity height and length on the outer wall temperature and efficiency are also discussed. The front cavity significantly improves the average outer wall temperature, outer wall temperature uniformity, and combustion efficiency of the micro-combustor, increases the area of the high temperature zone, and enhances the heat transfer between the burned blends and inner walls. The micro-combustor with the front cavity length of 2.0 mm and height of 0.5 mm is suitable for micro-TPV system application due to the relatively high outer wall temperature, combustion efficiency, and the most uniform outer wall temperature.
基金Project(51606220)supported by the National Natural Science Foundation of ChinaProject(1194028)supported by the Beijing Natural Science Foundation,China。
文摘Plasma jet has been widely used in supersonic combustor as an effective ignition and combustion assisted method,but currently it is mostly combined with the traditional wall fuel injection method,while the application combined with the central fuel injection method is less.In order to expand the combustion range,the plasma jet was introduced into a strut-cavity combustor with an alternating-wedge.The effects of total pressure of strut fuel injection,total pressure of cavity fuel injection,total pressure of plasma jet injection and plasma jet media on the combustion characteristics were analyzed in supersonic flow by numerical calculations in a three-dimensional domain.The combustion field structure,wall pressure distribution,combustion efficiency and distribution of H2O at the exit of the combustor with different injection conditions were analyzed.The results show that the combustion efficiency decreases with the increase of the strut fuel injection total pressure.However,the combustion area downstream increases when the total pressure of the strut fuel injection increases within the proper range.The combustion range is expanded and the combustion efficiency is improved when the cavity fuel injection total pressure is increased within the range of 0.5−2.0 MPa,but a sharp drop in combustion efficiency can be found due to limited fuel mixing when the total injection pressure of the cavity fuel is excessively increased.With the increased total injection pressure of the plasma jet,the height of the cavity shear layer is raised and the equivalence ratio of the gas mixture in the cavity is improved.When the total pressure of the plasma jet is 1.25 MPa,the combustion efficiency reaches a maximum of 82.1%.The combustion-assisted effect of different plasma jet media is significantly different.When the medium of the plasma jet is O2,the combustion-assisted effect on the combustor is most significant.
基金Supported by National Key Laboratory of Bubble Physics and Natural Circulation (2005)
文摘Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in separating large droplets, while droplet turbulence dispersion plays a decisive role in separating fine droplets. Good agreement exists between calculations and air-water experiments. The numerical method developed provides a rea-sonable description of the droplet trajectories and separating efficiency, and it can be applied to predicting the performance of gas-water separator with corrugated plates.
基金Projects(U1334208,51405516,51275532) supported by the National Natural Science Foundation of ChinaProject(2015ZZTS045) supported by the Fundamental Research Funds for the Central Universities of China
文摘A numerical study of bitubular tubes with diaphragms compared with single and bitubular tubes subjected to dynamic axial impact force was presented. At first, the energy absorption response of the composite structure under axial loading was analyzed by finite element simulation. The results show that the efficiency of energy absorption can be improved by introducing diaphragms to the double-walled columns. Then, the effect of the amount and location of diaphragms, the shape and the size of the inner tubes, and the thickness of the composite structures were also studied numerically. The collision performance of the composite structure is affected by the deformation of diaphragms, as well as the interaction of outer and inner tube. The non-uniform distribution of diaphragms can improve the energy absorption efficiency of structures for a constant number of diaphragms. The specific energy absorption of the hexagonal inner tube is the highest, followed by the circular, octagonal and square ones.
基金Project(2007BAF02B12)supported by the National Science Technology Support Program of ChinaProjects(E2011203090,E2012203028)supported by the Natural Science Foundation of Hebei Province,China
文摘Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown of work rolls was established using finite difference method to study roll's thermal deformation.Based on simulation results,the influences of control-efficiency factors on thermal crown are presented and the thermal crown of work rolls is analyzed after taking sub-cooling of sprinkling beam into consideration.It has been found that the control-efficiency factor of any position on the roll's surface is linear function of the temperature and the control ability of water temperature is stronger than other control parameters.In addition,the verification of the model has been carried out based on the producing technology data in some factories and the numerical simulation results coincide well with the experimental data.Therefore,this work has important value for on-line control of roll's crown in cold rolling.
文摘In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions.
文摘The spacing–burden(S/B) ratio plays significant role on rock fragmentation and proper utilization of explosive energy to minimize the undesirable damage.Low S/B ratio generates fine fragments due to pressure rings coalescence of two blast holes,whereas boulder generations were observed above optimum S/B ratio.Both conditions are not acceptable because of wastage of explosive energy.Therefore,to resolve this issue,a numerical model study was conducted to optimize the S/B ratio and to envisage its effect on rock fragmentation based on utilization of explosive energy.Finite element simulation tool was used to see the extent of two blast hole influence area variation with varying S/B ratio.The better results were obtained at S/B ratio of 1:2 with optimum utilization of peak explosive energy.The performance was observed based on peak kinetic energy,peak pressure,radial and hoop stresses on centre of the two blast holes,where pressure rings coalescence.
文摘The gas/liquid spiral separator, a key component in the compressed air system, was used to remove liquid and oil from gas stream by centrifugal and gravitational forces. To optimize the design of the separator,the relationship between the performance and structural parameters of separators is studied. Computational fluid dynamics (CFD) method is employed to simulate the flow fields and calculate the pressure drop and separation efficiency of air-liquid spiral separators with different structural parameters. The RSM (Reynolds stress model)turbulence model is used to analyze the highly swirling flow fields while the stochastic trajectory model is used to simulate the traces of liquid droplets in the flow field. A simplified calculation formula of pressure drop in spiral structures is obtained by modifying Darcy's equation and verified by experiment.
基金supported by the National Natural Science Foundation of China (No. 40972207)the National Science and Technology Major Projects (No. 2011ZX05034-005)the PAPD of Jiangsu Higher Education Institutions
文摘Coalbed methane(CBM) commercial development requires choosing the arrangement of the wells.This should be done by considering the corresponding input-output(investment-profit) efficiencies.Simulations were obtained from the computer modeling group(CMG) given the reservoir conditions of the Panzhuang block in the southern part of the Qinshui Basin.This is a demonstration region for CBM development located in Shanxi province of northern China.The sensitivity of gas production from a single vertical well to the primary reservoir parameters was estimated first.Then multi-well gas production from three different well patterns was simulated to estimate the most appropriate well spacing.Combining the investment requirements then gave investment-profit efficiencies for these well patterns.A data envelopment analysis(DEA) model was used to optimize the efficiency.The results show that the permeability,the reservoir pressure,and the gas content have an evident impact on single well gas production.The desorption time has little or no affect on production.The equilateral triangular well pattern(ETWP) in a 400 m well spacing is,for multi-well development,the optimal pattern.It has a better input-output ratio,a longer stable yield time,and provides for greater CBM recovery than does either the rectangular well pattern(RWP) or the five point well pattern(FPWP).
文摘In this research,the thermal performance of a single U-tube vertical ground heat exchanger is evaluated numerically as a function of the most influential flow parameters,namely,the soil porosity,volumetric heat capacity,and thermal conductivity of the backfill material,inlet volume flow rate,and inlet fluid temperature.The results are discussed in terms of the variations of the heat exchange rate,the effective thermal resistance,and the effectiveness of the ground heat exchanger.They show that the inlet volume flow rate,inlet fluid temperature,and backfill material thermal conductivity have significant effects on the thermal performance of the ground heat exchanger,such that by decreasing the inlet volume flow rate and increasing the backfill material thermal conductivity and inlet fluid temperature,the outlet fluid temperature decreases considerably.On the contrary,the soil porosity and backfill material volumetric heat capacity have negligible effects on the studied ground heat exchanger’s thermal performance.The lowest inlet fluid temperature reaches a the maximum effective thermal resistance of borehole and soil,and consequently the minimum heat transfer rate and effectiveness.Also,multilinear regression analyses are performed to determine the most feasible models able to predict the thermal properties of the single U-tube ground heat exchanger.