The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which sh...The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.展开更多
Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration(VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation(LE...Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration(VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation(LES) is conducted for studying the fluid-structure interaction. The vortex shedding in the wake, the motion trajectories of a cylinder, the variation of drag and lift forces on the cylinder are analyzed. The results show that the vortices of variable cross-section cylinder are chaotic and are varying along the cylinder. In places where cross-sections are changing significantly, the vortices are more irregular. The motion trail of the cylinder is almost the same but irregular. The drag and lift coefficients of the cylinder are varying with the changes of diameters.展开更多
Vertical distributions of local void fraction and bubble size in air-water dispersion system were measured with a dual conductivity probe in a fully baffled dished base stirred vessel with the diameter T of 0.48 m, ho...Vertical distributions of local void fraction and bubble size in air-water dispersion system were measured with a dual conductivity probe in a fully baffled dished base stirred vessel with the diameter T of 0.48 m, holding 0.134 m3 liquid. The impeller combination with a six parabolic blade disk turbine below two down-pumping hy- drofoil propellers, identified as PDT + 2CBY, was used in this study. The effects of the impeller diameter D, rang- ing from 0.30T to 0.40T (corresponding to D/T from 0.30 to 0.40), on the local void fraction and bubble size were investigated by both experimental and CFD simulation methods. At low superficial gas velocity Vs of 0.0077 m· s-1, there is no obvious difference in the local void fraction distribution for all systems with different D/T. However, at high superficial gas velocity, the system with a D/TofO.30 leads to higher local void fraction than systems with other D/T. There is no significant variation in the axial distribution of the Sauter mean bubble size for all the systems with different D/T at the same gas superficial velocity. CFD simulation based on the two-fluid model along with the population balance model (PBM) was used to investigate the effect of the impeller diameter on the gas-liquid flows. The local void fraction predicted by the numerical simulation approach was in reasonable a^reement with the experimental data.展开更多
The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from0.30...The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from0.30 T to 0.40T(T as the tank diameter), on gas dispersion in a stirred tank of 0.48 m diameter was investigated by experimental and CFD simulation methods. Power consumption and total gas holdup were measured for the same impeller configuration PDT + 2CBY with four different D/T. Results show that with D/T increases from 0.30 to 0.40, the relative power demand(RPD) in a gas–liquid system decreases slightly. At low superficial gas velocity VSof 0.0078 m·s-1, the gas holdup increases evidently with the increase of D/T. However, at high superficial gas velocity, the system with D/T = 0.33 gets a good balance between the gas recirculation and liquid shearing rate, which resulted in the highest gas holdup among four different D/T. CFD simulation based on the two-fluid model along with the Population Balance Model(PBM) was used to investigate the effect of impeller diameter on the gas dispersion. The power consumption and total gas holdup predicted by CFD simulation were in reasonable agreement with the experimental data.展开更多
This paper summarizes some of the typical riser vortex-induced vibration (VIV) problems in subsea oil and gas developments, and presents the corresponding computational fluid dynamics (CFD) time domain simula- tio...This paper summarizes some of the typical riser vortex-induced vibration (VIV) problems in subsea oil and gas developments, and presents the corresponding computational fluid dynamics (CFD) time domain simula- tion results to address these problems. First, the CFD time domain simulation approach was applied to analyze the wake field behind a stationary cylinder and a vibrating cylinder. Then a vertical riser VIV response under uniform current was studied. The VIV response time histories revealed some valuable clues that could lead to explanation of the higher harmonics. After that, a vertical riser VIV response under shear current was investigated. A 3 000 ft (1 ft=-0.304 8 m) water depth top tensioned riser was sized, and its VIV responses under uniform and shear current were studied. Then this paper continues to discuss one catenary flexible riser VIV response during normal lay. Last, the time domain simulation approach was applied to a partially submerged flexible jumper, to study the jumper VIV behavior, and dynamic motion envelopes. It was demonstrated that the time domain simulation ap- proach is able to disclose details of the flow field, vortex shedding pattern, and riser dynamic behavior, and han- dle different tvoes of risers under different Woe of currents.展开更多
At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent....At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications.展开更多
A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection ...A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.展开更多
This paper focuses on numerical simulations of bluff body aerodynamics with three-dimensional CFD(computational fluid dynamics) modeling,where a computational scheme for fluid-structure interactions is implemented.The...This paper focuses on numerical simulations of bluff body aerodynamics with three-dimensional CFD(computational fluid dynamics) modeling,where a computational scheme for fluid-structure interactions is implemented.The choice of an appropriate turbulence model for the computational modeling of bluff body aerodynamics using both two-dimensional and three-dimensional CFD numerical simulations is also considered.An efficient mesh control method which employs the mesh deformation technique is proposed to achieve better simulation results.Several long-span deck sections are chosen as examples which were stationary and pitching at a high Reynolds number.With the proposed CFD method and turbulence models,the force coefficients and flutter derivatives thus obtained are compared with the experimental measurement results and computed values completely from commercial software.Finally,a discussion on the effects of oscillation amplitude on the flutter instability of a bluff body is carried out with extended numerical simulations.These numerical analysis results demonstrate that the proposed three-dimensional CFD method,with proper turbulence modeling,has good accuracy and significant benefits for aerodynamic analysis and computational FSI studies of bluff bodies.展开更多
Numerical computation of the flowfield inside a pump is herein used as a numerical laboratory, subject to the limitations of modeling assumptions and to experimental verification. A numerical computation of the flow i...Numerical computation of the flowfield inside a pump is herein used as a numerical laboratory, subject to the limitations of modeling assumptions and to experimental verification. A numerical computation of the flow inside a real industrial centrifugal pump is performed that includes a very sophisticated geometry. Conversely to other computations, in this test case no simplification of the geometry was introduced. Numerical computations are obtained using Spalart-Allmaras turbulence model. A detailed analysis of the turbulent flowstructure is performed for the design point and two off design conditions. Additional computations were performed in order to compare the numerical and experimental pump characteristics; these were obtained under normalized testing conditions. Further computations are presented for the pump working in reverse turbine mode (PAT). Detailed analyses of the flow allow a comparison of the internal flow losses when the pump is operating in direct and reverse mode. This is also useful to help in the selection of an adequate pump geometry that can work in both modes with best efficiency.展开更多
In this paper,the CFD simulation and new flow unsteadiness analysis for a single-blade centrifugal pump with whole flow passage were carried out.The periodic flow unsteadiness has been quantitatively investigated in d...In this paper,the CFD simulation and new flow unsteadiness analysis for a single-blade centrifugal pump with whole flow passage were carried out.The periodic flow unsteadiness has been quantitatively investigated in detail by defining unsteady intensity and turbulence intensity in both rotor and volute domains under design condition Q=33 L s 1.The results show that the distributions of flow unsteadiness are the functions of impeller rotating angle and have complex unsteady characteristics.The obvious T u fluctuations can be also observed for different impeller positions.In addition,time-averaged unsteady intensity and time-averaged turbulence intensity were calculated by averaging the results of each mesh node for entire impeller revolution period to evaluate the strength distributions of flow unsteadiness directly and comprehensively.The accumulative results of an impeller revolution can directly show the positions and strength of the flow unsteadiness and turbulence intensity in both rotor and stator domains which can be an important aspect to be considered in the single-blade pump optimum design procedure for obtaining more stable inner flow of the pump and decreasing flow-induced vibration and noise.The flow unsteadiness in the side chamber cannot be neglected for an accurate prediction of the inner flow of the pump,and the optimizing design procedure for a single-blade pump impeller will not be accurate using CFD tool if the unsteady flow phenomenon in the side chamber is not considered.展开更多
Wave energy is one of the renewable energy sources with the highest potential.Several pilot plants have been built based on the principle of the Oscillating Water Column(OWC).Among the different solutions that have be...Wave energy is one of the renewable energy sources with the highest potential.Several pilot plants have been built based on the principle of the Oscillating Water Column(OWC).Among the different solutions that have been suggested,the Wells turbine has gained particular attention due to its simplicity and reliability.The majority of available studies concentrate on the steady operation of the Wells turbine,while only few analyze its performance under an unsteady and bi-directional air flow,as determined by the presence of the OWC system.In this work,experimental and numerical performance of a high-solidity Wells turbine with NACA0015 profiles have been compared,at different non-dimensional piston frequencies.The numerical simulations have been conducted using commercial CFD software and focus on unsteady predictions,with particular attention to the behavior of the flow upstream and downstream of the rotor,flow hysteresis between acceleration and deceleration phases and differences between intake and exhaust strokes due to the non-symmetrical configuration of the machine.展开更多
基金the financial support provided by the National Natural Science Foundation of China (No.51074156)the Natural Science Foundation of China for InnovativeResearch Group (No. 50921002)+1 种基金the Natural Science Foundation of Jiangsu Province of China (No. BK2010002)the Fundamental Research Funds for the Central Universities (No. 2010ZDP01A06)
文摘The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.
基金supported by the National Natural Science Foundation of China (Nos. 51179179 and 51079136)
文摘Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration(VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation(LES) is conducted for studying the fluid-structure interaction. The vortex shedding in the wake, the motion trajectories of a cylinder, the variation of drag and lift forces on the cylinder are analyzed. The results show that the vortices of variable cross-section cylinder are chaotic and are varying along the cylinder. In places where cross-sections are changing significantly, the vortices are more irregular. The motion trail of the cylinder is almost the same but irregular. The drag and lift coefficients of the cylinder are varying with the changes of diameters.
基金Supported by the National Natural Science Foundation of China(21121064,21206002,21376016)
文摘Vertical distributions of local void fraction and bubble size in air-water dispersion system were measured with a dual conductivity probe in a fully baffled dished base stirred vessel with the diameter T of 0.48 m, holding 0.134 m3 liquid. The impeller combination with a six parabolic blade disk turbine below two down-pumping hy- drofoil propellers, identified as PDT + 2CBY, was used in this study. The effects of the impeller diameter D, rang- ing from 0.30T to 0.40T (corresponding to D/T from 0.30 to 0.40), on the local void fraction and bubble size were investigated by both experimental and CFD simulation methods. At low superficial gas velocity Vs of 0.0077 m· s-1, there is no obvious difference in the local void fraction distribution for all systems with different D/T. However, at high superficial gas velocity, the system with a D/TofO.30 leads to higher local void fraction than systems with other D/T. There is no significant variation in the axial distribution of the Sauter mean bubble size for all the systems with different D/T at the same gas superficial velocity. CFD simulation based on the two-fluid model along with the population balance model (PBM) was used to investigate the effect of the impeller diameter on the gas-liquid flows. The local void fraction predicted by the numerical simulation approach was in reasonable a^reement with the experimental data.
基金Supported by the National Natural Science Foundation of China(21121064,21206002,21376016)
文摘The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from0.30 T to 0.40T(T as the tank diameter), on gas dispersion in a stirred tank of 0.48 m diameter was investigated by experimental and CFD simulation methods. Power consumption and total gas holdup were measured for the same impeller configuration PDT + 2CBY with four different D/T. Results show that with D/T increases from 0.30 to 0.40, the relative power demand(RPD) in a gas–liquid system decreases slightly. At low superficial gas velocity VSof 0.0078 m·s-1, the gas holdup increases evidently with the increase of D/T. However, at high superficial gas velocity, the system with D/T = 0.33 gets a good balance between the gas recirculation and liquid shearing rate, which resulted in the highest gas holdup among four different D/T. CFD simulation based on the two-fluid model along with the Population Balance Model(PBM) was used to investigate the effect of impeller diameter on the gas dispersion. The power consumption and total gas holdup predicted by CFD simulation were in reasonable agreement with the experimental data.
文摘This paper summarizes some of the typical riser vortex-induced vibration (VIV) problems in subsea oil and gas developments, and presents the corresponding computational fluid dynamics (CFD) time domain simula- tion results to address these problems. First, the CFD time domain simulation approach was applied to analyze the wake field behind a stationary cylinder and a vibrating cylinder. Then a vertical riser VIV response under uniform current was studied. The VIV response time histories revealed some valuable clues that could lead to explanation of the higher harmonics. After that, a vertical riser VIV response under shear current was investigated. A 3 000 ft (1 ft=-0.304 8 m) water depth top tensioned riser was sized, and its VIV responses under uniform and shear current were studied. Then this paper continues to discuss one catenary flexible riser VIV response during normal lay. Last, the time domain simulation approach was applied to a partially submerged flexible jumper, to study the jumper VIV behavior, and dynamic motion envelopes. It was demonstrated that the time domain simulation ap- proach is able to disclose details of the flow field, vortex shedding pattern, and riser dynamic behavior, and han- dle different tvoes of risers under different Woe of currents.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.50974060)the State Safety Production Science and Technology Development Plan (No.06-396)
文摘At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications.
基金The National Natural Science Foundation of China(No.41967043,52160003)the Natural Science Foundation of Gansu Province(No.20JR5RA461)+1 种基金the Key Project of China Railway Southwest Research Institute Co.,Ltd.(No.2018-KJ003-Z003-XB)the Industrial Support Program of the Higher Education of Gansu Province(No.2020C-40).
文摘A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.
基金supported by the National Natural Science Foundation of China(Grant No.11172055)the Foundation for the Author of National Excellent Doctoral(Grant No.2002030)
文摘This paper focuses on numerical simulations of bluff body aerodynamics with three-dimensional CFD(computational fluid dynamics) modeling,where a computational scheme for fluid-structure interactions is implemented.The choice of an appropriate turbulence model for the computational modeling of bluff body aerodynamics using both two-dimensional and three-dimensional CFD numerical simulations is also considered.An efficient mesh control method which employs the mesh deformation technique is proposed to achieve better simulation results.Several long-span deck sections are chosen as examples which were stationary and pitching at a high Reynolds number.With the proposed CFD method and turbulence models,the force coefficients and flutter derivatives thus obtained are compared with the experimental measurement results and computed values completely from commercial software.Finally,a discussion on the effects of oscillation amplitude on the flutter instability of a bluff body is carried out with extended numerical simulations.These numerical analysis results demonstrate that the proposed three-dimensional CFD method,with proper turbulence modeling,has good accuracy and significant benefits for aerodynamic analysis and computational FSI studies of bluff bodies.
基金supported by CAST-Center for Aerospace Sciences and Technology at University of Beira Interior (Portugal)
文摘Numerical computation of the flowfield inside a pump is herein used as a numerical laboratory, subject to the limitations of modeling assumptions and to experimental verification. A numerical computation of the flow inside a real industrial centrifugal pump is performed that includes a very sophisticated geometry. Conversely to other computations, in this test case no simplification of the geometry was introduced. Numerical computations are obtained using Spalart-Allmaras turbulence model. A detailed analysis of the turbulent flowstructure is performed for the design point and two off design conditions. Additional computations were performed in order to compare the numerical and experimental pump characteristics; these were obtained under normalized testing conditions. Further computations are presented for the pump working in reverse turbine mode (PAT). Detailed analyses of the flow allow a comparison of the internal flow losses when the pump is operating in direct and reverse mode. This is also useful to help in the selection of an adequate pump geometry that can work in both modes with best efficiency.
基金supported by the National Outstanding Young Scientists Founds of China (Grant No. 50825902)Jiangsu Provincial Project for Innovative Postgraduates of China (Grant No.CX10B_262Z)
文摘In this paper,the CFD simulation and new flow unsteadiness analysis for a single-blade centrifugal pump with whole flow passage were carried out.The periodic flow unsteadiness has been quantitatively investigated in detail by defining unsteady intensity and turbulence intensity in both rotor and volute domains under design condition Q=33 L s 1.The results show that the distributions of flow unsteadiness are the functions of impeller rotating angle and have complex unsteady characteristics.The obvious T u fluctuations can be also observed for different impeller positions.In addition,time-averaged unsteady intensity and time-averaged turbulence intensity were calculated by averaging the results of each mesh node for entire impeller revolution period to evaluate the strength distributions of flow unsteadiness directly and comprehensively.The accumulative results of an impeller revolution can directly show the positions and strength of the flow unsteadiness and turbulence intensity in both rotor and stator domains which can be an important aspect to be considered in the single-blade pump optimum design procedure for obtaining more stable inner flow of the pump and decreasing flow-induced vibration and noise.The flow unsteadiness in the side chamber cannot be neglected for an accurate prediction of the inner flow of the pump,and the optimizing design procedure for a single-blade pump impeller will not be accurate using CFD tool if the unsteady flow phenomenon in the side chamber is not considered.
文摘Wave energy is one of the renewable energy sources with the highest potential.Several pilot plants have been built based on the principle of the Oscillating Water Column(OWC).Among the different solutions that have been suggested,the Wells turbine has gained particular attention due to its simplicity and reliability.The majority of available studies concentrate on the steady operation of the Wells turbine,while only few analyze its performance under an unsteady and bi-directional air flow,as determined by the presence of the OWC system.In this work,experimental and numerical performance of a high-solidity Wells turbine with NACA0015 profiles have been compared,at different non-dimensional piston frequencies.The numerical simulations have been conducted using commercial CFD software and focus on unsteady predictions,with particular attention to the behavior of the flow upstream and downstream of the rotor,flow hysteresis between acceleration and deceleration phases and differences between intake and exhaust strokes due to the non-symmetrical configuration of the machine.