In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are el...In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are element formulation, friction coefficient, and material model. Numerical simulations using the non-linear finite element method are conducted to produce virtual experimental data for several collision scenarios. Pattern and size damages caused by collision in a real accident case are assumed as real experimental data, and these are used to validate the method. The element model study performed indicates that the Belytschko-Tsay element formulation should be recommended for use in virtual experiments. It is recommended that the real value of the friction coefficient for materials involved is applied in simulations. For the study of the material model, the application of materials with high yield strength is recommended for use in the side hull structure.展开更多
In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses si...In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k-co are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.展开更多
Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and disp...Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and displacement field changes of different sublevel stoping systems were also studied.Changes in the overlying rock strata settlement pattern has been analyzed and validated by in-situ monitoring data.The results show that:in the caving process,there exists an obvious delay and jump for the overlying rock strata displacement over time,and a stable arch can be formed in the process of caving,which leads to hidden goafs.Disturbed by the mining activity,a stress increase occurred in both the hanging wall and the foot wall,demonstrating a hump-shaped distribution pattern.From the comparison between simulation results and in-situ monitoring results,land subsidence shows a slow-development,suddenfailure,slow-development cycle pattern,which leads eventually to a stable state.This pattern validates the existence of balanced arch and hidden goafs.展开更多
Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height ...Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height are measured in a conical spouted bed of 100 mm I.D.at different gas velocities.The simulation results are compared with measurements of bed pressure drop and fountain height.The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls.It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data.The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.展开更多
Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145&#...Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145°E and 0°–35°N, the model was forced by the cross-calibrated multi-platform(CCMP) wind fi elds of September 15 to October 5, 2011. We then validated the simulation results against wave radar data observed from an oil platform and altimeter data from the Jason-2 satellite. The simulated waves were characterized by fi ve points along track using the Spectrum Integration Method(SIM) and the Spectrum Partitioning Method(SPM), by which wind sea and swell components of the 1D and 2D wave spectra are separated. There was reasonable agreement between the model results and observations, although the WW3 wave model may underestimate swell wave height. Signifi cant wave heights are large along the typhoon track and are noticeably greater on the right of the track than on the left. Swells from the east are largely unable to enter the South China Sea because of the obstruction due to the Philippine Islands. During the initial stage and later period of the typhoon, swells at the fi ve points were generated by the propagation of waves that were created by typhoons Haitang and Nalgae. Of the two methods, the 2D SPM method is more accurate than the 1D SIM which overestimates the separation frequency under low winds, but the SIM method is more convenient because it does not require wind speed and wave direction. When the typhoon left the area, the wind sea fractions decreased rapidly. Under similar wind conditions, the points located in the South China Sea are affected less than those points situated in the open sea because of the infl uence of the complex internal topography of the South China Sea. The results reveal the characteristic wind sea and swell features of the South China Sea and adjacent areas in response to typhoon Nesat, and provide a reference for swell forecasting and offshore structural designs.展开更多
A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed w...A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.展开更多
Dynamic numerical simulation of water conditions is useful for reservoir management. In remote semi-arid areas, however, meteorological and hydrological time-series data needed for computation are not frequently measu...Dynamic numerical simulation of water conditions is useful for reservoir management. In remote semi-arid areas, however, meteorological and hydrological time-series data needed for computation are not frequently measured and must be obtained using other information. This paper presents a case study of data generation for the computation of thermal conditions in the Joumine Reservoir, Tunisia. Data from the Wind Finder web site and daily sunshine duration at the nearest weather stations were utilized to generate cloud cover and solar radiation data based on meteorological correlations obtained in Japan, which is located at the same latitude as Tunisia. A time series of inflow water temperature was estimated from air temperature using a numerical filter expressed as a linear second-order differential equation. A numerical simulation using a vertical 2-D (two-dimensional) turbulent flow model for a stratified water body with generated data successfully reproduced seasonal thermal conditions in the reservoir, which were monitored using a thermistor chain.展开更多
A typhoon bogus data assimilation scheme (BDA) using dimension-reduced projection four-dimen-sional variational data assimilation (DRP-4-DVar),called DRP-BDA for short,is built in the Advanced Regional Eta Model (AREM...A typhoon bogus data assimilation scheme (BDA) using dimension-reduced projection four-dimen-sional variational data assimilation (DRP-4-DVar),called DRP-BDA for short,is built in the Advanced Regional Eta Model (AREM).As an adjoint-free approach,DRP-BDA saves time,and only several minutes are taken for the full BDA process.To evaluate its performance,the DRP-BDA is applied to a case study on a landfall ty-phoon,Fengshen (2008),from the Northwestern Pacific Ocean to Guangdong province,in which the bogus sea level pressure (SLP) is assimilated as a kind of observa-tion.The results show that a more realistic typhoon with correct center position,stronger warm core vortex,and more reasonable wind fields is reproduced in the analyzed initial condition through the new approach.Compared with the control run (CTRL) initialized with NCEP Final (FNL) Global Tropospheric Analyses,the DRP-BDA leads to an evidently positive impact on typhoon track forecasting and a small positive impact on typhoon inten-sity forecasting.Furthermore,the forecast landfall time conforms to the observed landfall time,and the forecast track error at the 36th hour is 32 km,which is much less than that of the CTRL (450 km).展开更多
An accurate prediction of flows using CFD depends on a large number of factors. In addition to discretizing the flow region, the correct definition of boundary or initial conditions and the choice of suitable numerica...An accurate prediction of flows using CFD depends on a large number of factors. In addition to discretizing the flow region, the correct definition of boundary or initial conditions and the choice of suitable numerical methods, the applied turbulence model influences the results of the flow simulation to a great extent. Therefore, a validation of the results with the experimental data is of great importance for a correct selection of a turbulence model. It is the scope of this paper to assess different turbulence models for the simulation of pipe flows. The calculation results of pipe flows through a combination of 90~ elbows and a 1/3 segmental orifice are compared with experimental measurement results. This has the advantage that the suitability of the turbulence models for simulating both shear and swirl flows can be investigated. Thus, the k-ω, k-ε model and the Launder Reece Rodi Reynolds stress model are compared with each other and experimental results. Furthermore, this investigation is extended through including a much more c detached-eddy simulation. This model provides better prediction of the flow by resolving the large eddies and modeling the small ones. The experimental results originate from LDV measurements over the entire pipe cross-section. This measuring method provides velocity vectors over the measured surface.展开更多
Cooperative inversion for petroleum reservoir characterization produces an Earth model that fits all available geological, geophysical and reservoir production data to within acceptable error criteria. The mathematica...Cooperative inversion for petroleum reservoir characterization produces an Earth model that fits all available geological, geophysical and reservoir production data to within acceptable error criteria. The mathematical formulation for the inversion requires an appropriate modeling description of both seismic wave propagation and reservoir fluid flow. The inversion requires the minimization of an objective function which is the weighted sum of model misfits for both geophysical and production data. While the complete automation of cooperative inversion may be unrealistic or intractable, geophysical data can provide useful information for enhancing heavy oil production. A methodology is given to demonstrate possible cooperative inversion application in heavy oil reservoirs.展开更多
Motivated by a phenomenon in an experiment conducted in the Northwestern Pacific indicating that the energy of the received signal around the sound channel axis is much greater than that at shallower depths,we study s...Motivated by a phenomenon in an experiment conducted in the Northwestern Pacific indicating that the energy of the received signal around the sound channel axis is much greater than that at shallower depths,we study sound propagation from the transitional area(shelfbreak)to deep water.Numerical simulations with different source depths are first performed,from which we reach the following conclusions.When the source is located near the sea surface,sound will be strongly attenuated by bottom losses in a range-independent oceanic environment,whereas it can propagate to a very long range because of the continental slope.When the source is mounted on the bottom in shallow water,acoustic energy will be trapped near the sound channel axis,and it converges more evidently than the case where the source is located near the sea surface.Then,numerical simulations with different source ranges are performed.By comparing the relative energy level in the vertical direction between the numerical simulations and the experimental data,the range of the air-gun source can be approximated.展开更多
The default fractional vegetation cover and terrain height were replaced by the estimated fractional vegetation cover, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing Sys...The default fractional vegetation cover and terrain height were replaced by the estimated fractional vegetation cover, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Im- aging Spectroradiometer (EOS-MODIS) and the Digital Elevation Model of the Shuttle Radar Topography Mission (SRTM) system. The near-surface meteorological elements over northeastern China were assimilated into the three-dimensional varia- tional data assimilation system (3DVar) module in the Weather Research and Forecasting (WRF) model. The structure and daily variations of air temperature, humidity, wind and energy fields over northeastern China were simulated using the WRF model. Four groups of numerical experiments were performed, and the simulation results were analyzed of latent heat flux, sensible heat flux, and their relationships with changes in the surface energy flux due to soil moisture and precipitation over different surfaces. The simulations were compared with observations of the stations Tongyu, Naiman, Jinzhou, and Miyun from June to August, 2009. The results showed that the WRF model achieves high-quality simulations of the diurnal charac- teristics of the surface layer temperature, wind direction, net radiation, sensible heat flux, and latent heat flux over semiarid northeastern China in the summer. The simulated near-surface temperature, relative humidity, and wind speed were improved in the data assimilation case (Case 2) compared with control case (Case 1). The simulated sensible heat fluxes and surface heat fluxes were improved by the land surface parameterization case (Case 3) and the combined case (Case 4). The simulated tem- poral variations in soil moisture over the northeastern arid areas agree well with observations in Case 4, but the simulated pre- cipitation should be improved in the WRF model. This study could improve the land surface parameters by utilizing remote sensing data and could further improve atmospheric elements with a data assimilation system. This work provides an effective attempt at combining multi-source data with different spatial and temporal scales into numerical simulations. The assimilation datasets generated by this work can be applied to research on climate change and environmental monitoring of add lands, as well as research on the formation and stability of climate over semiarid areas.展开更多
This paper is concerned with experimental and numerical research on 3D flow past prismatic turbine cascade SE1050 (known in QNET network as open test case SE1050). The primary goal was to assess the influence of the...This paper is concerned with experimental and numerical research on 3D flow past prismatic turbine cascade SE1050 (known in QNET network as open test case SE1050). The primary goal was to assess the influence of the inlet velocity profile on the flow structures in the interblade channel and on the flow field parameters at the cascade exit and to compare these findings to results of numerical simulations. Investigations of 3D flow past the cascade with non-uniform inlet velocity profile were carried out both experimentally and numerically at subsonic (M2 = 0.8) and at transonic (M2 = 1.2) regime at design angle of incidence. Experimental data was obtained using a traversing device with a five-hole conical probe. Numerically, the 3D flow was simulated by open source code OpenFOAM and in-house code. Analyses of experimental data and CFD simulations have revealed the development of distinctive vortex structures resulting from non-uniform inlet velocity profile. Origin of these structures results in increased loss of kinetic energy and spanwise shift of kinetic energy loss coefficient distribution. Differences found between the subsonic and the transonic case confirm earlier findings available in the literature. Results of CFD and experiments agree reasonably well.展开更多
In this paper,we first briefly review the history of air-sea coupled models,and then introduce the current status and recent advances of regional air-sea coupled models.In particular,we discuss the core technical and ...In this paper,we first briefly review the history of air-sea coupled models,and then introduce the current status and recent advances of regional air-sea coupled models.In particular,we discuss the core technical and scientific issues involved in the development of regional coupled models,including the coupling technique,lateral boundary conditions,the coupling with sea waves(ices),and data assimilation.Furthermore,we introduce the application of regional coupled models in numerical simulation and dynamical downscaling.Finally,we discuss the existing problems and future directions in the development of regional air-sea coupled models.展开更多
文摘In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are element formulation, friction coefficient, and material model. Numerical simulations using the non-linear finite element method are conducted to produce virtual experimental data for several collision scenarios. Pattern and size damages caused by collision in a real accident case are assumed as real experimental data, and these are used to validate the method. The element model study performed indicates that the Belytschko-Tsay element formulation should be recommended for use in virtual experiments. It is recommended that the real value of the friction coefficient for materials involved is applied in simulations. For the study of the material model, the application of materials with high yield strength is recommended for use in the side hull structure.
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos.51309040, 51379033, 51209027, 51309025), Open Research Fund of State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University) (Grant No.1402), and Fundamental Research Fund for the Central Universities (DMU3132015089).
文摘In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k-co are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.
基金financially supported by the National Natural Science Foundation of China(No.51374033)the Doctoral Program of Higher Education Research Fund(No.20120006110022)the Chenchao Iron Mine and the technical support of Itasca
文摘Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and displacement field changes of different sublevel stoping systems were also studied.Changes in the overlying rock strata settlement pattern has been analyzed and validated by in-situ monitoring data.The results show that:in the caving process,there exists an obvious delay and jump for the overlying rock strata displacement over time,and a stable arch can be formed in the process of caving,which leads to hidden goafs.Disturbed by the mining activity,a stress increase occurred in both the hanging wall and the foot wall,demonstrating a hump-shaped distribution pattern.From the comparison between simulation results and in-situ monitoring results,land subsidence shows a slow-development,suddenfailure,slow-development cycle pattern,which leads eventually to a stable state.This pattern validates the existence of balanced arch and hidden goafs.
基金Supported by the National Natural Science Foundation of China(51206020)the Program for New Century Excellent Talents in University(NCET-12-0703)the Northeast Petroleum University Foundation
文摘Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height are measured in a conical spouted bed of 100 mm I.D.at different gas velocities.The simulation results are compared with measurements of bed pressure drop and fountain height.The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls.It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data.The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA122803)the Special Funds for Marine Commonweal Research(No.201305032)the ESA-MOST Dragon 3 Cooperation Program(No.10466)
文摘Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145°E and 0°–35°N, the model was forced by the cross-calibrated multi-platform(CCMP) wind fi elds of September 15 to October 5, 2011. We then validated the simulation results against wave radar data observed from an oil platform and altimeter data from the Jason-2 satellite. The simulated waves were characterized by fi ve points along track using the Spectrum Integration Method(SIM) and the Spectrum Partitioning Method(SPM), by which wind sea and swell components of the 1D and 2D wave spectra are separated. There was reasonable agreement between the model results and observations, although the WW3 wave model may underestimate swell wave height. Signifi cant wave heights are large along the typhoon track and are noticeably greater on the right of the track than on the left. Swells from the east are largely unable to enter the South China Sea because of the obstruction due to the Philippine Islands. During the initial stage and later period of the typhoon, swells at the fi ve points were generated by the propagation of waves that were created by typhoons Haitang and Nalgae. Of the two methods, the 2D SPM method is more accurate than the 1D SIM which overestimates the separation frequency under low winds, but the SIM method is more convenient because it does not require wind speed and wave direction. When the typhoon left the area, the wind sea fractions decreased rapidly. Under similar wind conditions, the points located in the South China Sea are affected less than those points situated in the open sea because of the infl uence of the complex internal topography of the South China Sea. The results reveal the characteristic wind sea and swell features of the South China Sea and adjacent areas in response to typhoon Nesat, and provide a reference for swell forecasting and offshore structural designs.
基金Foundation item: Project(2009-K3-2) supported by the Ministry of Housing and Urban-Rural Development of China
文摘A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.
文摘Dynamic numerical simulation of water conditions is useful for reservoir management. In remote semi-arid areas, however, meteorological and hydrological time-series data needed for computation are not frequently measured and must be obtained using other information. This paper presents a case study of data generation for the computation of thermal conditions in the Joumine Reservoir, Tunisia. Data from the Wind Finder web site and daily sunshine duration at the nearest weather stations were utilized to generate cloud cover and solar radiation data based on meteorological correlations obtained in Japan, which is located at the same latitude as Tunisia. A time series of inflow water temperature was estimated from air temperature using a numerical filter expressed as a linear second-order differential equation. A numerical simulation using a vertical 2-D (two-dimensional) turbulent flow model for a stratified water body with generated data successfully reproduced seasonal thermal conditions in the reservoir, which were monitored using a thermistor chain.
基金the Ministry of Finance of Chinathe China Meteorological Administration for the Special Project of Meteorological Sector (Grant No.GYHYQX200906009)the National Natural Science Foundation of China for the Innovation Group Project (Grant No.40821092)
文摘A typhoon bogus data assimilation scheme (BDA) using dimension-reduced projection four-dimen-sional variational data assimilation (DRP-4-DVar),called DRP-BDA for short,is built in the Advanced Regional Eta Model (AREM).As an adjoint-free approach,DRP-BDA saves time,and only several minutes are taken for the full BDA process.To evaluate its performance,the DRP-BDA is applied to a case study on a landfall ty-phoon,Fengshen (2008),from the Northwestern Pacific Ocean to Guangdong province,in which the bogus sea level pressure (SLP) is assimilated as a kind of observa-tion.The results show that a more realistic typhoon with correct center position,stronger warm core vortex,and more reasonable wind fields is reproduced in the analyzed initial condition through the new approach.Compared with the control run (CTRL) initialized with NCEP Final (FNL) Global Tropospheric Analyses,the DRP-BDA leads to an evidently positive impact on typhoon track forecasting and a small positive impact on typhoon inten-sity forecasting.Furthermore,the forecast landfall time conforms to the observed landfall time,and the forecast track error at the 36th hour is 32 km,which is much less than that of the CTRL (450 km).
文摘An accurate prediction of flows using CFD depends on a large number of factors. In addition to discretizing the flow region, the correct definition of boundary or initial conditions and the choice of suitable numerical methods, the applied turbulence model influences the results of the flow simulation to a great extent. Therefore, a validation of the results with the experimental data is of great importance for a correct selection of a turbulence model. It is the scope of this paper to assess different turbulence models for the simulation of pipe flows. The calculation results of pipe flows through a combination of 90~ elbows and a 1/3 segmental orifice are compared with experimental measurement results. This has the advantage that the suitability of the turbulence models for simulating both shear and swirl flows can be investigated. Thus, the k-ω, k-ε model and the Launder Reece Rodi Reynolds stress model are compared with each other and experimental results. Furthermore, this investigation is extended through including a much more c detached-eddy simulation. This model provides better prediction of the flow by resolving the large eddies and modeling the small ones. The experimental results originate from LDV measurements over the entire pipe cross-section. This measuring method provides velocity vectors over the measured surface.
文摘Cooperative inversion for petroleum reservoir characterization produces an Earth model that fits all available geological, geophysical and reservoir production data to within acceptable error criteria. The mathematical formulation for the inversion requires an appropriate modeling description of both seismic wave propagation and reservoir fluid flow. The inversion requires the minimization of an objective function which is the weighted sum of model misfits for both geophysical and production data. While the complete automation of cooperative inversion may be unrealistic or intractable, geophysical data can provide useful information for enhancing heavy oil production. A methodology is given to demonstrate possible cooperative inversion application in heavy oil reservoirs.
基金supported by the National Natural Science Foundation of China(Grant No.11125420)
文摘Motivated by a phenomenon in an experiment conducted in the Northwestern Pacific indicating that the energy of the received signal around the sound channel axis is much greater than that at shallower depths,we study sound propagation from the transitional area(shelfbreak)to deep water.Numerical simulations with different source depths are first performed,from which we reach the following conclusions.When the source is located near the sea surface,sound will be strongly attenuated by bottom losses in a range-independent oceanic environment,whereas it can propagate to a very long range because of the continental slope.When the source is mounted on the bottom in shallow water,acoustic energy will be trapped near the sound channel axis,and it converges more evidently than the case where the source is located near the sea surface.Then,numerical simulations with different source ranges are performed.By comparing the relative energy level in the vertical direction between the numerical simulations and the experimental data,the range of the air-gun source can be approximated.
基金supported by the National Basic Research Program of China(Grant No.2010CB950504)the National High-tech R&D Program of China(Grant No.2013AA122003)the open funds of the Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Chinese Academy of Sciences(Grant No.LPCC201101)
文摘The default fractional vegetation cover and terrain height were replaced by the estimated fractional vegetation cover, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Im- aging Spectroradiometer (EOS-MODIS) and the Digital Elevation Model of the Shuttle Radar Topography Mission (SRTM) system. The near-surface meteorological elements over northeastern China were assimilated into the three-dimensional varia- tional data assimilation system (3DVar) module in the Weather Research and Forecasting (WRF) model. The structure and daily variations of air temperature, humidity, wind and energy fields over northeastern China were simulated using the WRF model. Four groups of numerical experiments were performed, and the simulation results were analyzed of latent heat flux, sensible heat flux, and their relationships with changes in the surface energy flux due to soil moisture and precipitation over different surfaces. The simulations were compared with observations of the stations Tongyu, Naiman, Jinzhou, and Miyun from June to August, 2009. The results showed that the WRF model achieves high-quality simulations of the diurnal charac- teristics of the surface layer temperature, wind direction, net radiation, sensible heat flux, and latent heat flux over semiarid northeastern China in the summer. The simulated near-surface temperature, relative humidity, and wind speed were improved in the data assimilation case (Case 2) compared with control case (Case 1). The simulated sensible heat fluxes and surface heat fluxes were improved by the land surface parameterization case (Case 3) and the combined case (Case 4). The simulated tem- poral variations in soil moisture over the northeastern arid areas agree well with observations in Case 4, but the simulated pre- cipitation should be improved in the WRF model. This study could improve the land surface parameters by utilizing remote sensing data and could further improve atmospheric elements with a data assimilation system. This work provides an effective attempt at combining multi-source data with different spatial and temporal scales into numerical simulations. The assimilation datasets generated by this work can be applied to research on climate change and environmental monitoring of add lands, as well as research on the formation and stability of climate over semiarid areas.
基金supported by the Czech Science Foundation under the grant No. GAP 101/10/1329
文摘This paper is concerned with experimental and numerical research on 3D flow past prismatic turbine cascade SE1050 (known in QNET network as open test case SE1050). The primary goal was to assess the influence of the inlet velocity profile on the flow structures in the interblade channel and on the flow field parameters at the cascade exit and to compare these findings to results of numerical simulations. Investigations of 3D flow past the cascade with non-uniform inlet velocity profile were carried out both experimentally and numerically at subsonic (M2 = 0.8) and at transonic (M2 = 1.2) regime at design angle of incidence. Experimental data was obtained using a traversing device with a five-hole conical probe. Numerically, the 3D flow was simulated by open source code OpenFOAM and in-house code. Analyses of experimental data and CFD simulations have revealed the development of distinctive vortex structures resulting from non-uniform inlet velocity profile. Origin of these structures results in increased loss of kinetic energy and spanwise shift of kinetic energy loss coefficient distribution. Differences found between the subsonic and the transonic case confirm earlier findings available in the literature. Results of CFD and experiments agree reasonably well.
基金supported by Knowledge Innovation Program of Chinese Academy of Sciences (Grant Nos. KZCX2-EW-208 and KZCX2-YW-Q11-02)the MOST of China (Grant No. 2011CB403504)National Natural Science Foundation of China (Grant No. 41076009)
文摘In this paper,we first briefly review the history of air-sea coupled models,and then introduce the current status and recent advances of regional air-sea coupled models.In particular,we discuss the core technical and scientific issues involved in the development of regional coupled models,including the coupling technique,lateral boundary conditions,the coupling with sea waves(ices),and data assimilation.Furthermore,we introduce the application of regional coupled models in numerical simulation and dynamical downscaling.Finally,we discuss the existing problems and future directions in the development of regional air-sea coupled models.