Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow fi...Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow field in convergent-divergent nozzle. Theory analysis and experiment results of mass flow rates conclude that the RNG k-ε model is the most suitable model. The pressure distribution in the convergent-divergent nozzle was revealed by computational fluid dynamic (CFD) simulating on the turbulent flow field under different pressure conditions. The growing conditions of cavitation bubbles were shown; meanwhile, the phenomena in the experiment could be explained. The differential pres- sure between the upstream and downstream in nozzle throat section can improve the cavitating effect of cavitation water jet.展开更多
Numerical simulation combined with experimental test was carried out to analyze the pre-stretching process of the 7075 aluminum alloy sheet,from which the stress variation curves and residual stress of aluminum alloy ...Numerical simulation combined with experimental test was carried out to analyze the pre-stretching process of the 7075 aluminum alloy sheet,from which the stress variation curves and residual stress of aluminum alloy sheet in different stretch rates were obtained.The results show that the residual stress in length direction is released after unloading the stretch force,while the residual stress in width direction is released during the stretching process.The study of residual stress elimination is beneficial for optimizing stretch rate on the basis of residual stress distribution law.By comparing the variation principle of residual stress in length direction,the size range of three deformation areas and elimination percentage of residual stress were obtained.The residual stresses of clamping area and transition area are not eliminated effectively,so sawing quantity should be the sum of both the areas.The elimination rate of residual stress in even deformation area could reach 90% after choosing a proper stretch rate,which is verified by both simulation and experiment.展开更多
This paper introduces the stress and deformation of anti floating anchor rod and explained the damage. Through field testing and numerical analysis, the article were studied the displacement and internal force of a ba...This paper introduces the stress and deformation of anti floating anchor rod and explained the damage. Through field testing and numerical analysis, the article were studied the displacement and internal force of a basement tensile anti float anchor, results showed that: the axial force of bolt tension transfer is top-down transfer, axial force decreases, the stress concentrate on the end. When a force is applied to a certain load, end firstly generate damage, but with the deepening of the axial force, it is greatly reduced, which indicates that the anchor force is an effective length, rather than the longer the anchor pullout force is bigger; anchor group effect is a problem that can not be ignored, because the engineering community for its attention degree is not enough, so that the design of anti floating anchor the lack of a reliable basis, the test results can provide a reference for the future design of anti floating anchor. Prestressed anchors in the tension lock, prestressed loss are regularly.展开更多
When applying fiat belts, correct tracking of the belt through the installation has to be assured. Since flat belts are commonly used for conveying and transmission purposes, tracking systems have been well developed,...When applying fiat belts, correct tracking of the belt through the installation has to be assured. Since flat belts are commonly used for conveying and transmission purposes, tracking systems have been well developed, but the ultimate tracking behaviour of the belt can be greatly enhanced by taking special care in the creation of an adequate tracking mechanism. To obtain long-life operation and full value from the equipment, the correct tracking technique plays an important role. This paper deals with two tracking techniques: The skewed and the angled pulley axis. Numerical simulation results are compared with both measurements and an analytical approach. The advantages of numerical simulation compared to experimental tests are ease, convenience and the absence of any safety risk. Compared to analytical approaches the simulation is used for systems for which simple closed form analytic solutions are not possible.展开更多
Tubular section members made of steel are common in space trusses. There are several types of connections to attach these members. The most popular is the staking end-flattened connection. The reduced cost and the fas...Tubular section members made of steel are common in space trusses. There are several types of connections to attach these members. The most popular is the staking end-flattened connection. The reduced cost and the fast assemblage of the truss are among the advantages of the staking end-flattened connection on 3D trusses. However, such connections present disadvantages like eccentricities and stiffness weakening of the tubular members. In this work, based on computer simulations and experimental lab tests on prototypes, small changes on the staking end-flattened connections such as reinforcement and eccentricity correction are evaluated. The results show an increase of 68% for local collapse and 17% for global collapse in the truss load carrying capacity when the suggested changes proposed in this article are used for the staking end-flattened connections.展开更多
This paper describes the development of a miniature pump having an impeller with an exit diameter of 24 mm supported with the motor rotor by a fluid dynamic beating. Tests verify that the miniature pump is stable and ...This paper describes the development of a miniature pump having an impeller with an exit diameter of 24 mm supported with the motor rotor by a fluid dynamic beating. Tests verify that the miniature pump is stable and quiet for rotational speeds larger than 4000 rain-1. The three-dimensional turbulent flow in the entire pump flow passage and the laminar flow in the fluid dynamic bearing were then simulated numerically. The average pump performance was well predicted by the simulations. Both the tests and the simulations show that there is no obvious Reynolds effect for the miniature pump within the tested range of rotational speeds. The numerical results also show that the beating capacity of the fluid dynamic bearing increases with the pump rotor rotational speed and the eccentricity ratio of the journal to the bushing. This pump is very compact, so it is a prom- ising device for surgical use.展开更多
On the basis of the three-dimensional design platform of the mixed-flow pump impellers, an optimization design system was developed in this paper by improving the genetic algorithm with application of both strategies ...On the basis of the three-dimensional design platform of the mixed-flow pump impellers, an optimization design system was developed in this paper by improving the genetic algorithm with application of both strategies of keeping the optimal individu- al and employing the niche. This system took the highest efficiency of the impeller as the optimization objective and employed P, a0, A0h and A0t, which could directly affect the shape and the position of the blade, as optimization parameters. In addition, loss model was used to obtain fast and accurate prediction of the impeller efficiency. The optimization results illustrated that this system had advantages such as high accuracy and fine convergence, thus to effectively improve the design of the mixed-flow pump impellers. Numerical simulation was applied to determine the internal flow fields of the impeller obtained by optimization design, and to analyze both the relative velocity and the pressure distributions. The test results demonstrated that the mixed flow pump had the highest efficiency of 87.2%, the wide and flat high efficiency operation zone, the relatively wide range of blade angle adjustment, fine cavitation performance and satisfied stability.展开更多
The internal heat transfer of different gases in microporous media was investigated experimentally and numerically.The experimental test section had a sintered bronze porous media with average particle diameters from ...The internal heat transfer of different gases in microporous media was investigated experimentally and numerically.The experimental test section had a sintered bronze porous media with average particle diameters from 11 μm to 225 μm.The Knudsen numbers at the average inlet and outlet pressures of each test section varied from 0.0006 to 0.13 with porosities from 0.16 to 0.38.The particle-to-fluid heat transfer coefficients of air,CO 2 and helium in the microporous media were determined experimentally.The results show that the Nusselt numbers for the internal heat transfer in the microporous media decrease with decreasing the particle diameter,d p,and increasing Knudsen number for the same Reynolds number.For Kn>0.01,the rarefaction affects the internal heat transfer in the microporous media.A Nusselt number correlation was developed that includes the influence of rarefaction.The computational fluid dynamics(CFD) numerical simulation was carried out to do the pore scale simulation of internal heat transfer in the microporous media considering the rarefaction effect.Pore scale three-dimensional numerical simulations were also used to predict the particle-to-fluid heat transfer coefficients.The numerical results without slip-flow and temperature jump effects for Kn<0.01 corresponded well with the experimental data.The numerical results with slip-flow and temperature jump effects for 0.01<Kn<0.13 are lower than the numerical results without rarefaction effects,but closer to the experimental data.The numerical results with rarefaction effects can accurately simulate the unsteady heat transfer in the microporous media.展开更多
The semi-circular bend(SCB) dynamic fracture toughness test is simulated using discrete element models. The influence of the frictional boundary condition, constitutive law and specimen thickness on the test measureme...The semi-circular bend(SCB) dynamic fracture toughness test is simulated using discrete element models. The influence of the frictional boundary condition, constitutive law and specimen thickness on the test measurements is investigated. It is found that friction between loading plates and the rock specimen affects the test results. Therefore, friction must be carefully considered to obtain accurate measurements. The simulation results also show that in contrast to the 2D model in which a rate-dependent cohesive law must be introduced, 3D models with a rate-independent law can produce good results. Furthermore, the study suggests that test measurements are seriously affected by specimen thickness; thus, full 3D modeling is required for simulation of the SCB test.展开更多
In this study, a series of numerical analyses was performed in order to evaluate the performance of full-scale closed-loop vertical ground heat exchangers constructed in Wonju, South Korea. The circulating HDPE pipe, ...In this study, a series of numerical analyses was performed in order to evaluate the performance of full-scale closed-loop vertical ground heat exchangers constructed in Wonju, South Korea. The circulating HDPE pipe, borehole and surrounding ground formation were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the ground heat exchanger system. Two user-defined functions (UDFs) accounting for the difference in the temperature of the circulating inflow and outflow fluid and the variation of ground temperature with depth were adopted in the FLUENT modeling. The thermal conductivities of grouts (cement vs. bentonite) measured in laboratory were used as input values in the numerical analyses to compare the thermal efficiency of the cement and bentonite grouts used for installing the closed-loop vertical ground heat exchanger. A series of numerical analyses was carried out to simulate in-situ thermal response tests performed in the construction site. From the comparison between the in-situ thermal response test results and numerical simulations, the average thermal conductivity of the ground formation in the construction site is back-calculated as approximately 4 W/mK. This value can be used in evaluating the long-term performance of the closed-loop vertical ground heat ex changer.展开更多
基金Supported by the National Natural Science Foundation of China (50621403,50604019)Program for New Century Excellent Talents in Univer sity(NCET-06-0767)
文摘Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow field in convergent-divergent nozzle. Theory analysis and experiment results of mass flow rates conclude that the RNG k-ε model is the most suitable model. The pressure distribution in the convergent-divergent nozzle was revealed by computational fluid dynamic (CFD) simulating on the turbulent flow field under different pressure conditions. The growing conditions of cavitation bubbles were shown; meanwhile, the phenomena in the experiment could be explained. The differential pres- sure between the upstream and downstream in nozzle throat section can improve the cavitating effect of cavitation water jet.
基金Project(2009GJF10028) supported by Technical Special Pilot Program of ChinaProject(CDJXS11110013) supported by the Fundamental Research Funds for the Central Universities of China
文摘Numerical simulation combined with experimental test was carried out to analyze the pre-stretching process of the 7075 aluminum alloy sheet,from which the stress variation curves and residual stress of aluminum alloy sheet in different stretch rates were obtained.The results show that the residual stress in length direction is released after unloading the stretch force,while the residual stress in width direction is released during the stretching process.The study of residual stress elimination is beneficial for optimizing stretch rate on the basis of residual stress distribution law.By comparing the variation principle of residual stress in length direction,the size range of three deformation areas and elimination percentage of residual stress were obtained.The residual stresses of clamping area and transition area are not eliminated effectively,so sawing quantity should be the sum of both the areas.The elimination rate of residual stress in even deformation area could reach 90% after choosing a proper stretch rate,which is verified by both simulation and experiment.
文摘This paper introduces the stress and deformation of anti floating anchor rod and explained the damage. Through field testing and numerical analysis, the article were studied the displacement and internal force of a basement tensile anti float anchor, results showed that: the axial force of bolt tension transfer is top-down transfer, axial force decreases, the stress concentrate on the end. When a force is applied to a certain load, end firstly generate damage, but with the deepening of the axial force, it is greatly reduced, which indicates that the anchor force is an effective length, rather than the longer the anchor pullout force is bigger; anchor group effect is a problem that can not be ignored, because the engineering community for its attention degree is not enough, so that the design of anti floating anchor the lack of a reliable basis, the test results can provide a reference for the future design of anti floating anchor. Prestressed anchors in the tension lock, prestressed loss are regularly.
文摘When applying fiat belts, correct tracking of the belt through the installation has to be assured. Since flat belts are commonly used for conveying and transmission purposes, tracking systems have been well developed, but the ultimate tracking behaviour of the belt can be greatly enhanced by taking special care in the creation of an adequate tracking mechanism. To obtain long-life operation and full value from the equipment, the correct tracking technique plays an important role. This paper deals with two tracking techniques: The skewed and the angled pulley axis. Numerical simulation results are compared with both measurements and an analytical approach. The advantages of numerical simulation compared to experimental tests are ease, convenience and the absence of any safety risk. Compared to analytical approaches the simulation is used for systems for which simple closed form analytic solutions are not possible.
文摘Tubular section members made of steel are common in space trusses. There are several types of connections to attach these members. The most popular is the staking end-flattened connection. The reduced cost and the fast assemblage of the truss are among the advantages of the staking end-flattened connection on 3D trusses. However, such connections present disadvantages like eccentricities and stiffness weakening of the tubular members. In this work, based on computer simulations and experimental lab tests on prototypes, small changes on the staking end-flattened connections such as reinforcement and eccentricity correction are evaluated. The results show an increase of 68% for local collapse and 17% for global collapse in the truss load carrying capacity when the suggested changes proposed in this article are used for the staking end-flattened connections.
基金supported by the National Natural Science Foundation of China (Grant No. 50976061)State Key Laboratory for Hydroscience and Hydraulic Engineering, Tsinghua University (Grant No. 2010-ZY-4)Tsinghua-Yuyuan Medical Fund and the Ministry of Science and Technol-ogy of China (Grant No. 2008KR0441)
文摘This paper describes the development of a miniature pump having an impeller with an exit diameter of 24 mm supported with the motor rotor by a fluid dynamic beating. Tests verify that the miniature pump is stable and quiet for rotational speeds larger than 4000 rain-1. The three-dimensional turbulent flow in the entire pump flow passage and the laminar flow in the fluid dynamic bearing were then simulated numerically. The average pump performance was well predicted by the simulations. Both the tests and the simulations show that there is no obvious Reynolds effect for the miniature pump within the tested range of rotational speeds. The numerical results also show that the beating capacity of the fluid dynamic bearing increases with the pump rotor rotational speed and the eccentricity ratio of the journal to the bushing. This pump is very compact, so it is a prom- ising device for surgical use.
基金supported by the National Natural Science Foundation of China (Grant No. 51176088)
文摘On the basis of the three-dimensional design platform of the mixed-flow pump impellers, an optimization design system was developed in this paper by improving the genetic algorithm with application of both strategies of keeping the optimal individu- al and employing the niche. This system took the highest efficiency of the impeller as the optimization objective and employed P, a0, A0h and A0t, which could directly affect the shape and the position of the blade, as optimization parameters. In addition, loss model was used to obtain fast and accurate prediction of the impeller efficiency. The optimization results illustrated that this system had advantages such as high accuracy and fine convergence, thus to effectively improve the design of the mixed-flow pump impellers. Numerical simulation was applied to determine the internal flow fields of the impeller obtained by optimization design, and to analyze both the relative velocity and the pressure distributions. The test results demonstrated that the mixed flow pump had the highest efficiency of 87.2%, the wide and flat high efficiency operation zone, the relatively wide range of blade angle adjustment, fine cavitation performance and satisfied stability.
基金supported by the Key Project Fund from the National Natural Science Foundation of China (Grant No. 50736003)the Major Project of Beijing Natural Science Foundation (Grant No. 3110001)+1 种基金the Industrial Technology Development Program (Grant No. B1420110113)the National High Technology R&D Program of China (GrantNo.2012AA052803)
文摘The internal heat transfer of different gases in microporous media was investigated experimentally and numerically.The experimental test section had a sintered bronze porous media with average particle diameters from 11 μm to 225 μm.The Knudsen numbers at the average inlet and outlet pressures of each test section varied from 0.0006 to 0.13 with porosities from 0.16 to 0.38.The particle-to-fluid heat transfer coefficients of air,CO 2 and helium in the microporous media were determined experimentally.The results show that the Nusselt numbers for the internal heat transfer in the microporous media decrease with decreasing the particle diameter,d p,and increasing Knudsen number for the same Reynolds number.For Kn>0.01,the rarefaction affects the internal heat transfer in the microporous media.A Nusselt number correlation was developed that includes the influence of rarefaction.The computational fluid dynamics(CFD) numerical simulation was carried out to do the pore scale simulation of internal heat transfer in the microporous media considering the rarefaction effect.Pore scale three-dimensional numerical simulations were also used to predict the particle-to-fluid heat transfer coefficients.The numerical results without slip-flow and temperature jump effects for Kn<0.01 corresponded well with the experimental data.The numerical results with slip-flow and temperature jump effects for 0.01<Kn<0.13 are lower than the numerical results without rarefaction effects,but closer to the experimental data.The numerical results with rarefaction effects can accurately simulate the unsteady heat transfer in the microporous media.
基金supported by the Australian Research Council(Grant No.DE130100457)State Key Laboratory of Hydraulics and Mountain River Engineering(SKHL)(Grant No.SKHL1407)the National Natural Science Foundation of China(Grant Nos.41202207,51204112 and 2015JY0045)
文摘The semi-circular bend(SCB) dynamic fracture toughness test is simulated using discrete element models. The influence of the frictional boundary condition, constitutive law and specimen thickness on the test measurements is investigated. It is found that friction between loading plates and the rock specimen affects the test results. Therefore, friction must be carefully considered to obtain accurate measurements. The simulation results also show that in contrast to the 2D model in which a rate-dependent cohesive law must be introduced, 3D models with a rate-independent law can produce good results. Furthermore, the study suggests that test measurements are seriously affected by specimen thickness; thus, full 3D modeling is required for simulation of the SCB test.
基金supported by the Construction Technology Innovation Program from KICTEP (Grant No. 06CTIPD04)the National Research Foundation of Korea Grant funded by the Korean Government (Grant No. 2010-0011159)
文摘In this study, a series of numerical analyses was performed in order to evaluate the performance of full-scale closed-loop vertical ground heat exchangers constructed in Wonju, South Korea. The circulating HDPE pipe, borehole and surrounding ground formation were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the ground heat exchanger system. Two user-defined functions (UDFs) accounting for the difference in the temperature of the circulating inflow and outflow fluid and the variation of ground temperature with depth were adopted in the FLUENT modeling. The thermal conductivities of grouts (cement vs. bentonite) measured in laboratory were used as input values in the numerical analyses to compare the thermal efficiency of the cement and bentonite grouts used for installing the closed-loop vertical ground heat exchanger. A series of numerical analyses was carried out to simulate in-situ thermal response tests performed in the construction site. From the comparison between the in-situ thermal response test results and numerical simulations, the average thermal conductivity of the ground formation in the construction site is back-calculated as approximately 4 W/mK. This value can be used in evaluating the long-term performance of the closed-loop vertical ground heat ex changer.