According to the distribution characteristics of traffic congestion in time and space, a measure index system of urban traffic congestion is set up based on the spatial and temporal distribution. Based on the analysis...According to the distribution characteristics of traffic congestion in time and space, a measure index system of urban traffic congestion is set up based on the spatial and temporal distribution. Based on the analysis of the main characteristics of traffic congestion and the generation process of traffic congestion, the measure model for urban traffic congestion is constructed by the value function. Moreover, based on the measure values of traffic congestion in urban road networks with defined different levels, a method to prevent and control traffic congestion is designed. The application results confirm that the proposed method is feasible in comprehensive measures for urban traffic congestion and they are consistent with the results of other methods. The measuring results can therefore reflect the actual situation. The comprehensive measure model is scientific and the process is simple, and it has wide application prospects and practical value.展开更多
In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid colu...In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.展开更多
A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona...A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.展开更多
In this paper,the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM) .Three-dimensional models were set up for the canopy roof with opened or closed skylights.The air flow aroun...In this paper,the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM) .Three-dimensional models were set up for the canopy roof with opened or closed skylights.The air flow around the roof under wind action from three directions was analysed respectively.Wind pressure coefficients on the canopy roof were determined by NWTM.The results of NWTM agreed well with those of wind tunnel test for the roof with opened skylights,which verified the applicability and rationality of NWTM.The effect of the closure of skylights was then investigated with NWTM.It was concluded that the closure of the skylights may increase the wind suction on the top surface of the roof greatly and should be considered in the structure design of the canopy roof.展开更多
This paper examines a new method of evaluating the stability of a rock slope using a remotely positioned LDV (laser Doppler vibrometer). We conducted an experiment using physical models and performed a numerical ana...This paper examines a new method of evaluating the stability of a rock slope using a remotely positioned LDV (laser Doppler vibrometer). We conducted an experiment using physical models and performed a numerical analysis to evaluate the new method. The physical model included: (l) concrete blocks on an artificial soil slope with two block sizes and three slopes; (2) concrete blocks bonded to the concrete base with different contact area. The LDV measurements agreed with conventional seismometer measurements. The dominant frequency of the blocks varied with the stability and dominant frequency and the amplitude varied with the block size. The numerical model was used to examine a concrete block adhered to a concrete base with different contact areas. The dominant frequency of the blocks determined using the numerical model agreed with those obtained from the physical experiments. We analyzed different sized blocks to examine the scaling effects. The dominant frequency of the blocks was inversely related to the block size. These results demonstrated the effectiveness of LDV for evaluating the stability of rock slopes and cleared the block size scaling effects.展开更多
Aiming at the limitation of the traditional method for determination of protection region, combined with the actual situation of a mine, a new method for determination of protection region was put forward (including ...Aiming at the limitation of the traditional method for determination of protection region, combined with the actual situation of a mine, a new method for determination of protection region was put forward (including the protection of working face layout and development direction), that is, gas flow observation analysis on the spot and gas content contrast method. The protection region was determined by gas flow observation analysis, gas content contrast, and computer numerical simulation combined with engineering practice. In the process of gas content test, the fixed sampling method "big hole drill reaming, small orifice drill rod connected with core tube" was employed. The results show that the determined protection region is in accordance with the actual site situation. The fixed sampling method ensures the accuracy of gas measurement of gas content.展开更多
When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coa...When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coal bed transfusion rule,established the transfusion mathematical model of the coal bed which had considered the slippage effect. Observing the influence of the different toencircle presses,the different hole press and the different actual stress to the coal bed by using the three-axles permeameter.Thus sum- marized the transfusion rule of the coal bed.The experiment indicates that the bigger of the surrounding pressure,the more obvious of the slippage effect.At the same condition of axial pressure and the surrounding pressure,with the increase of the hole pressure,the coal permeability became bigger and then smaller.The coal body effective tress and the permeability curve nearly also has the same change tendency.Thus we can draws the conclusion that the transfusion of the gas in the coal bed generally has the slippage effect.展开更多
Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecul...Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecular structure without any experimental effort, they provide a simple and straightforward method for property prediction. In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (Х), modified molecular connectivity indices ( ^mХ^v ) and valance molecular connectivity indices ( ^mХ^v ), with ^mХ^v calculated using the hydrogen perturbation. A stepwise Multiple Linear Regression (MLR) method was used to select the best indices. The predicted flash points are in good agreement with the experimental data, with the average absolute deviation 4.3 K.展开更多
Draft tube vortex is one of the main causes of hydraulic instability in hydraulic reaction turbines,in particular Francis turbines.A method of cavitation calculations was proposed to predict the pressure fluctuations ...Draft tube vortex is one of the main causes of hydraulic instability in hydraulic reaction turbines,in particular Francis turbines.A method of cavitation calculations was proposed to predict the pressure fluctuations induced by draft tube vortices in a model Francis turbine,by solving RANS equations with RNG k-turbulence model and ZGB cavitation model,with modified turbulence viscosity.Three cases with different flow rates at high head were studied.In the study case of part load,two modes of revolutions with the same rotating direction,revolution around the axis of the draft tube cone,and revolution around the core of the vortex rope,can be recognized.The elliptical shaped vortex rope causes anisotropic characteristics of pressure fluctuations around the centerline of the draft tube cone.By analyzing the phase angles of the pressure fluctuations,the role of the vortex rope as an exciter in the oscillating case can be recognized.An analysis of Batchelor instability,i.e.instability in q-vortex like flow structure,has been carried out on the draft tube vortices in these three cases.It can be concluded that the trajectory for study case with part load lies in the region of absolute instability(AI),and it lies in the region of convective instability(CI)for study case with design flow rate.Trajectory for study case with over load lies in the AI region at the inlet of the draft tube,and enters CI region near the end of the elbow.展开更多
Here we propose a method for extracting line-of-sight ionospheric observables from GPS data using precise point positioning(PPP).The PPP-derived ionospheric observables(PIOs) have identical form with their counterpart...Here we propose a method for extracting line-of-sight ionospheric observables from GPS data using precise point positioning(PPP).The PPP-derived ionospheric observables(PIOs) have identical form with their counterparts obtained from leveling the geometry-free GPS carrier-phase to code(leveling ionospheric observables,LIOs),and are affected by the satellite and receiver inter-frequency biases(IFBs).Based on the co-location experiments,the effects of extracting error arising from the observational noise and multipath on the PIOs and the LIOs are comparatively assessed,and the considerably reduced effects ranging from 70% to 75% on the PIOs with respect to the LIOs can be verified in our case.In addition,based on 26 consecutive days' GPS observations from two international GNSS service(IGS) sites(COCO,DAEJ) during disturbed ionosphere period,the extracted PIOs and LIOs are respectively used as the input of single-layer ionospheric model to retrieve daily satellite IFBs station-by-station.The minor extracting errors underlying the PIOs in contrast to the LIOs can also be proven by reducing day-to-day scatter and improving between-receiver consistency in the retrieved satellite IFBs values.展开更多
The optimal filter 7r = {π,t ∈ [0, T]} of a stochastic signal is approximated by a sequence {Try} of measure-valued processes defined by branching particle systems in a random environment (given by the observation ...The optimal filter 7r = {π,t ∈ [0, T]} of a stochastic signal is approximated by a sequence {Try} of measure-valued processes defined by branching particle systems in a random environment (given by the observation process). The location and weight of each particle are governed by stochastic differential equations driven by the observation process, which is common for all particles, as well as by an individual Brownian motion, which applies to this specific particle only. The branching mechanism of each particle depends on the observation process and the path of this particle itself during its short lifetime δ = n-2α, where n is the number of initial particles and ~ is a fixed parameter to be optimized. As n → ∞, we prove the convergence of π to πt uniformly for t ∈ [0, T]. Compared with the available results in the literature, the main contribution of this article is that the approximation is free of any stochastic integral which makes the numerical implementation readily available.展开更多
In a classical layout process of a fan the quantity of losses is estimated as a sum and expressed in the overall efficiency rote However the characteristic of the pressure rise, the losses and the efficiency rate besi...In a classical layout process of a fan the quantity of losses is estimated as a sum and expressed in the overall efficiency rote However the characteristic of the pressure rise, the losses and the efficiency rate beside the design point is not known. Against this background a numerical model was developed to calculate quantitative values of occurring losses at radial fan impellers at an early stage in the design process. It allows to estimate the pressure rise and efficiency rate of a given fan geometry at and beside the design point. The physics of losses are described in literature, but obtaining quantitative values is still a challenge. As common in hydraulic theory the losses are calculated with analytic formulas supported by coefficients and efficiency rates, which have to be determined empirically. This paper shows the method how to determine the coefficients for a given radial fan. Therefore a representative radial fan with backward curved blades was designed in reference to classical design guidelines. Performance measuring was done conform to ISO 5801. The flow was calculated at 8 different operation points using CFD methods. The RANS equations are solved by using the SST-k-omega turbulence model. The flow do- main consists of one blade section including inlet channel and outflow chamber. Spatial discretization is done by a block-structured mesh of approx. 1.8 million cells. Performance data show a very good agreement between measurement and calculation.展开更多
基金The National Natural Science Foundation of China(No.51178157)
文摘According to the distribution characteristics of traffic congestion in time and space, a measure index system of urban traffic congestion is set up based on the spatial and temporal distribution. Based on the analysis of the main characteristics of traffic congestion and the generation process of traffic congestion, the measure model for urban traffic congestion is constructed by the value function. Moreover, based on the measure values of traffic congestion in urban road networks with defined different levels, a method to prevent and control traffic congestion is designed. The application results confirm that the proposed method is feasible in comprehensive measures for urban traffic congestion and they are consistent with the results of other methods. The measuring results can therefore reflect the actual situation. The comprehensive measure model is scientific and the process is simple, and it has wide application prospects and practical value.
基金supported by NSFC(No.41174118)one of the major state S&T special projects(No.2008ZX05020-004)+1 种基金a Postdoctoral Fellowship of China(No.2013M530106)China Scholarship Council(No.2010644006)
文摘In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.
基金Project(Z110803)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,ChinaProject(2008AA062303)supported by the National High Technology Research and Development Program of China
文摘A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.
文摘In this paper,the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM) .Three-dimensional models were set up for the canopy roof with opened or closed skylights.The air flow around the roof under wind action from three directions was analysed respectively.Wind pressure coefficients on the canopy roof were determined by NWTM.The results of NWTM agreed well with those of wind tunnel test for the roof with opened skylights,which verified the applicability and rationality of NWTM.The effect of the closure of skylights was then investigated with NWTM.It was concluded that the closure of the skylights may increase the wind suction on the top surface of the roof greatly and should be considered in the structure design of the canopy roof.
文摘This paper examines a new method of evaluating the stability of a rock slope using a remotely positioned LDV (laser Doppler vibrometer). We conducted an experiment using physical models and performed a numerical analysis to evaluate the new method. The physical model included: (l) concrete blocks on an artificial soil slope with two block sizes and three slopes; (2) concrete blocks bonded to the concrete base with different contact area. The LDV measurements agreed with conventional seismometer measurements. The dominant frequency of the blocks varied with the stability and dominant frequency and the amplitude varied with the block size. The numerical model was used to examine a concrete block adhered to a concrete base with different contact areas. The dominant frequency of the blocks determined using the numerical model agreed with those obtained from the physical experiments. We analyzed different sized blocks to examine the scaling effects. The dominant frequency of the blocks was inversely related to the block size. These results demonstrated the effectiveness of LDV for evaluating the stability of rock slopes and cleared the block size scaling effects.
文摘Aiming at the limitation of the traditional method for determination of protection region, combined with the actual situation of a mine, a new method for determination of protection region was put forward (including the protection of working face layout and development direction), that is, gas flow observation analysis on the spot and gas content contrast method. The protection region was determined by gas flow observation analysis, gas content contrast, and computer numerical simulation combined with engineering practice. In the process of gas content test, the fixed sampling method "big hole drill reaming, small orifice drill rod connected with core tube" was employed. The results show that the determined protection region is in accordance with the actual site situation. The fixed sampling method ensures the accuracy of gas measurement of gas content.
基金the National Natural Sciences Fund Subsidization Project of China(50774041)National Important Item of the Natural Sciences Fund Subsidization Project of China(50490275)
文摘When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coal bed transfusion rule,established the transfusion mathematical model of the coal bed which had considered the slippage effect. Observing the influence of the different toencircle presses,the different hole press and the different actual stress to the coal bed by using the three-axles permeameter.Thus sum- marized the transfusion rule of the coal bed.The experiment indicates that the bigger of the surrounding pressure,the more obvious of the slippage effect.At the same condition of axial pressure and the surrounding pressure,with the increase of the hole pressure,the coal permeability became bigger and then smaller.The coal body effective tress and the permeability curve nearly also has the same change tendency.Thus we can draws the conclusion that the transfusion of the gas in the coal bed generally has the slippage effect.
文摘Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecular structure without any experimental effort, they provide a simple and straightforward method for property prediction. In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (Х), modified molecular connectivity indices ( ^mХ^v ) and valance molecular connectivity indices ( ^mХ^v ), with ^mХ^v calculated using the hydrogen perturbation. A stepwise Multiple Linear Regression (MLR) method was used to select the best indices. The predicted flash points are in good agreement with the experimental data, with the average absolute deviation 4.3 K.
基金supported by the National Natural Science Foundation of China(Grant No.51076077)National Key Technology R&D Program of China(Grant No.2008BAC48B02)
文摘Draft tube vortex is one of the main causes of hydraulic instability in hydraulic reaction turbines,in particular Francis turbines.A method of cavitation calculations was proposed to predict the pressure fluctuations induced by draft tube vortices in a model Francis turbine,by solving RANS equations with RNG k-turbulence model and ZGB cavitation model,with modified turbulence viscosity.Three cases with different flow rates at high head were studied.In the study case of part load,two modes of revolutions with the same rotating direction,revolution around the axis of the draft tube cone,and revolution around the core of the vortex rope,can be recognized.The elliptical shaped vortex rope causes anisotropic characteristics of pressure fluctuations around the centerline of the draft tube cone.By analyzing the phase angles of the pressure fluctuations,the role of the vortex rope as an exciter in the oscillating case can be recognized.An analysis of Batchelor instability,i.e.instability in q-vortex like flow structure,has been carried out on the draft tube vortices in these three cases.It can be concluded that the trajectory for study case with part load lies in the region of absolute instability(AI),and it lies in the region of convective instability(CI)for study case with design flow rate.Trajectory for study case with over load lies in the AI region at the inlet of the draft tube,and enters CI region near the end of the elbow.
基金supported by National Basic Research Program of China(Grant No. 2012CB82560X)National Natural Science Foundation of China (Grant Nos. 41174015 and 41074013)
文摘Here we propose a method for extracting line-of-sight ionospheric observables from GPS data using precise point positioning(PPP).The PPP-derived ionospheric observables(PIOs) have identical form with their counterparts obtained from leveling the geometry-free GPS carrier-phase to code(leveling ionospheric observables,LIOs),and are affected by the satellite and receiver inter-frequency biases(IFBs).Based on the co-location experiments,the effects of extracting error arising from the observational noise and multipath on the PIOs and the LIOs are comparatively assessed,and the considerably reduced effects ranging from 70% to 75% on the PIOs with respect to the LIOs can be verified in our case.In addition,based on 26 consecutive days' GPS observations from two international GNSS service(IGS) sites(COCO,DAEJ) during disturbed ionosphere period,the extracted PIOs and LIOs are respectively used as the input of single-layer ionospheric model to retrieve daily satellite IFBs station-by-station.The minor extracting errors underlying the PIOs in contrast to the LIOs can also be proven by reducing day-to-day scatter and improving between-receiver consistency in the retrieved satellite IFBs values.
基金supported by US National Science Foundation(Grant No. DMS-0906907)
文摘The optimal filter 7r = {π,t ∈ [0, T]} of a stochastic signal is approximated by a sequence {Try} of measure-valued processes defined by branching particle systems in a random environment (given by the observation process). The location and weight of each particle are governed by stochastic differential equations driven by the observation process, which is common for all particles, as well as by an individual Brownian motion, which applies to this specific particle only. The branching mechanism of each particle depends on the observation process and the path of this particle itself during its short lifetime δ = n-2α, where n is the number of initial particles and ~ is a fixed parameter to be optimized. As n → ∞, we prove the convergence of π to πt uniformly for t ∈ [0, T]. Compared with the available results in the literature, the main contribution of this article is that the approximation is free of any stochastic integral which makes the numerical implementation readily available.
文摘In a classical layout process of a fan the quantity of losses is estimated as a sum and expressed in the overall efficiency rote However the characteristic of the pressure rise, the losses and the efficiency rate beside the design point is not known. Against this background a numerical model was developed to calculate quantitative values of occurring losses at radial fan impellers at an early stage in the design process. It allows to estimate the pressure rise and efficiency rate of a given fan geometry at and beside the design point. The physics of losses are described in literature, but obtaining quantitative values is still a challenge. As common in hydraulic theory the losses are calculated with analytic formulas supported by coefficients and efficiency rates, which have to be determined empirically. This paper shows the method how to determine the coefficients for a given radial fan. Therefore a representative radial fan with backward curved blades was designed in reference to classical design guidelines. Performance measuring was done conform to ISO 5801. The flow was calculated at 8 different operation points using CFD methods. The RANS equations are solved by using the SST-k-omega turbulence model. The flow do- main consists of one blade section including inlet channel and outflow chamber. Spatial discretization is done by a block-structured mesh of approx. 1.8 million cells. Performance data show a very good agreement between measurement and calculation.