The critical impeller speed, N_(JS), for complete suspension of solidparticles in the agitated solid-liquid two-phase system in baffled stirred tanks with a standardRushton impeller is predicted using the computationa...The critical impeller speed, N_(JS), for complete suspension of solidparticles in the agitated solid-liquid two-phase system in baffled stirred tanks with a standardRushton impeller is predicted using the computational procedure proposed in Part Ⅰ. Three differentnumerical criteria are tested for determining the critical solid suspension. The predicted N_(JS)is compared with those obtained from several empirical correlations. It is suggested the mostreasonable criterion for determining the complete suspension of solid particles is the positive signof simulated axial velocity of solid phase at the location where the solid particles are mostdifficult to be suspended.展开更多
Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound so...Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.展开更多
In order to investigate and predict the material properties of curved surface AISI 1045 steel component during spot continual induction hardening(SCIH),a 3D model for curved surface workpieces which coupled electromag...In order to investigate and predict the material properties of curved surface AISI 1045 steel component during spot continual induction hardening(SCIH),a 3D model for curved surface workpieces which coupled electromagnetic,temperature and phase transformation fields was built by finite element software ANSYS.A small size inductor and magnetizer were used in this model,which can move along the top surface of workpiece flexibly.The effect of inductor moving velocity and workpiece radius on temperature field was analyzed and the heating delay phenomenon was found through comparing the simulated results.The temperature field results indicate that the heating delay phenomenon is more obvious under high inductor moving velocity condition.This trend becomes more obvious if the workpiece radius becomes larger.The predictions of microstructure and micro-hardness distribution were also carried out via this model.The predicted results show that the inductor moving velocity is the dominated factor for the distribution of 100% martensite region and phase transformation region.The influencing factor of workpiece radius on 100% martensite region and phase transformation region distribution is obvious under relatively high inductor moving velocity but inconspicuous under relatively low inductor moving velocity.展开更多
The underwater heat exhausting source can cause the thermal difference of the surrounding and surface water.In this paper,the thermal character caused by the underwater heat exhausting source is studied by numerical s...The underwater heat exhausting source can cause the thermal difference of the surrounding and surface water.In this paper,the thermal character caused by the underwater heat exhausting source is studied by numerical simulation and experiment.The results show that the thermal floating distance is related with the sailing velocity of the underwater target.The higher the velocity is,the longer the hot wake is,and the broader the hot scope is.The relative distance of the thermal floating spot is almost in a logarithmic law with the velocity.The experimental results are accordant with the numerical simulation,and the obvious hot wake can be observed by the moving underwater heat exhausting source testing with temperature sensors and infrared camera.展开更多
This paper numerically investigates particle saltation in a turbulent channel flow having a rough bed consisting of 2–3 layers of densely packed spheres.In this study,we combined three the state-of-the-art technologi...This paper numerically investigates particle saltation in a turbulent channel flow having a rough bed consisting of 2–3 layers of densely packed spheres.In this study,we combined three the state-of-the-art technologies,i.e.,the direct numerical simulation of turbulent flow,the combined finite-discrete element modelling of the deformation,movement and collision of the particles,and the immersed boundary method for the fluid-solid interaction.Here we verify our code by comparing the flow and particle statistical features with the published data and then present the hydrodynamic forces acting on a particle together with the particle coordinates and velocities,during a typical saltation.We found strong correlation between the abruptly decreasing particle stream-wise velocity and the increasing vertical velocity at collision,which indicates that the continuous saltation of large grain-size particles is controlled by collision parameters such as particle incident angle,local rough bed packing arrangement,and particle density,etc.This physical process is different from that of particle entrainment in which turbulence coherence structures play an important role.Probability distribution functions of several important saltation parameters and the relationships between them are presented.The results show that the saltating particles hitting the windward side of the bed particles are more likely to bounce off the rough bed than those hitting the leeside.Based on the above findings,saltation mechanisms of large grain-size particles in turbulent channel flow are presented.展开更多
A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the num...A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the numerical simulations of wet steam flow in a 2D LAVAL nozzle and in the White cascade respectively. The results of two simulations demonstrate that the model is reliable. Meanwhile, the spontaneous condensing flow in White cascade was analyzed and it infers that the irreversible loss caused by condensation accounts for the largest share (about 8.78% of inlet total pressure) in total pressure loss while the loss caused by velocity slip takes the smallest share (nearly 0.42%), and another part of total pressure loss caused by pneumatic factors contributes a less share than condensation, i.e. almost 3.95% of inlet total pressure.展开更多
文摘The critical impeller speed, N_(JS), for complete suspension of solidparticles in the agitated solid-liquid two-phase system in baffled stirred tanks with a standardRushton impeller is predicted using the computational procedure proposed in Part Ⅰ. Three differentnumerical criteria are tested for determining the critical solid suspension. The predicted N_(JS)is compared with those obtained from several empirical correlations. It is suggested the mostreasonable criterion for determining the complete suspension of solid particles is the positive signof simulated axial velocity of solid phase at the location where the solid particles are mostdifficult to be suspended.
文摘Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.
基金Project (51175392) supported by the National Natural Science Foundation of ChinaProject (2014BAA012) supported by the Key Project of Hubei Province Science & Technology Pillar Program,ChinaProjects (2012-IV-067,2013-VII-020) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to investigate and predict the material properties of curved surface AISI 1045 steel component during spot continual induction hardening(SCIH),a 3D model for curved surface workpieces which coupled electromagnetic,temperature and phase transformation fields was built by finite element software ANSYS.A small size inductor and magnetizer were used in this model,which can move along the top surface of workpiece flexibly.The effect of inductor moving velocity and workpiece radius on temperature field was analyzed and the heating delay phenomenon was found through comparing the simulated results.The temperature field results indicate that the heating delay phenomenon is more obvious under high inductor moving velocity condition.This trend becomes more obvious if the workpiece radius becomes larger.The predictions of microstructure and micro-hardness distribution were also carried out via this model.The predicted results show that the inductor moving velocity is the dominated factor for the distribution of 100% martensite region and phase transformation region.The influencing factor of workpiece radius on 100% martensite region and phase transformation region distribution is obvious under relatively high inductor moving velocity but inconspicuous under relatively low inductor moving velocity.
基金supported by Key Laboratory for National Defence of Underwater Observing and Control Technology fund number 9140c2603100805
文摘The underwater heat exhausting source can cause the thermal difference of the surrounding and surface water.In this paper,the thermal character caused by the underwater heat exhausting source is studied by numerical simulation and experiment.The results show that the thermal floating distance is related with the sailing velocity of the underwater target.The higher the velocity is,the longer the hot wake is,and the broader the hot scope is.The relative distance of the thermal floating spot is almost in a logarithmic law with the velocity.The experimental results are accordant with the numerical simulation,and the obvious hot wake can be observed by the moving underwater heat exhausting source testing with temperature sensors and infrared camera.
基金supported by a Marie Curie International Incoming Fellowship within the seventh European Community Framework Programme(Grant No.PIIF-GA-2009-236457)the financial support of the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)+2 种基金Programme of Introducing Talents of Discipline to Universities(Grant No.B14012)National Natural Science Foundation of China(Grant Nos.50809047 and 51009105)Natural Science Foundation of Tianjin(Grant No.12JCQNJC02600)
文摘This paper numerically investigates particle saltation in a turbulent channel flow having a rough bed consisting of 2–3 layers of densely packed spheres.In this study,we combined three the state-of-the-art technologies,i.e.,the direct numerical simulation of turbulent flow,the combined finite-discrete element modelling of the deformation,movement and collision of the particles,and the immersed boundary method for the fluid-solid interaction.Here we verify our code by comparing the flow and particle statistical features with the published data and then present the hydrodynamic forces acting on a particle together with the particle coordinates and velocities,during a typical saltation.We found strong correlation between the abruptly decreasing particle stream-wise velocity and the increasing vertical velocity at collision,which indicates that the continuous saltation of large grain-size particles is controlled by collision parameters such as particle incident angle,local rough bed packing arrangement,and particle density,etc.This physical process is different from that of particle entrainment in which turbulence coherence structures play an important role.Probability distribution functions of several important saltation parameters and the relationships between them are presented.The results show that the saltating particles hitting the windward side of the bed particles are more likely to bounce off the rough bed than those hitting the leeside.Based on the above findings,saltation mechanisms of large grain-size particles in turbulent channel flow are presented.
基金support for this work by the fundamental research funds for the Cen-tral Universities (Grant No. HIT. NSRIF. 201173)
文摘A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the numerical simulations of wet steam flow in a 2D LAVAL nozzle and in the White cascade respectively. The results of two simulations demonstrate that the model is reliable. Meanwhile, the spontaneous condensing flow in White cascade was analyzed and it infers that the irreversible loss caused by condensation accounts for the largest share (about 8.78% of inlet total pressure) in total pressure loss while the loss caused by velocity slip takes the smallest share (nearly 0.42%), and another part of total pressure loss caused by pneumatic factors contributes a less share than condensation, i.e. almost 3.95% of inlet total pressure.