This work presents a numerical investigation on steady internal, external and surface flows of a liquid sphere immersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation i...This work presents a numerical investigation on steady internal, external and surface flows of a liquid sphere immersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation is adopted to solve the governing equations of two-phase flow in a 3-D spherical coordinate system. Numerical results show that the streamlines for Re = 0 are closed Jeffery orbits on the surface of the liquid sphere, and also closed curves outside and inside the liquid sphere. However, the streamlines have intricate and non-closed structures for Re ≠ 0. The flow structure is dependent on the values of Reynolds number and interior-to-exterior viscosity ratio.展开更多
Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great conc...Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great concem. This paper uses the quasi arbitrary Lagrangian Eulerian finite element method (QALE-FEM), based on the fully nonlinear potential theory (FNPT), to numerically investigate the interaction between two 3-D floating structures, which undergo motions with 6 degrees of freedom (DOFs), and are subjected to waves with different incident angles. The transient behaviours of floating structures, the effect of the accompanied structures, and the nonlinearity on the motion of and the wave loads on the structures are the main focuses of the study. The investigation reveals an important transient effects causing considerably larger structure motion than that in steady state. The results also indicate that the accompanied structure in close proximity enhances the interaction between different motion modes and results in stronger nonlinearity causing 2hal-order component to be of similar significance to the fundamental one.展开更多
A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contain...A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.展开更多
A numerical method using AUSMDV scheme and k-ω SST turbulence model with an explicit compressibility correction was developed,and a 3-D numerical simulation of a supersonic flow field with a vertical sonic jet of hyd...A numerical method using AUSMDV scheme and k-ω SST turbulence model with an explicit compressibility correction was developed,and a 3-D numerical simulation of a supersonic flow field with a vertical sonic jet of hydrogen was performed.Good agreement between numerical results and experimental data validated the reliability of the numerical method.Whereafter,two parameters,mass-weighted average total pressure and mixing efficiency,were defined to evaluate the mixing performance of different injection schemes.Based on the numerical method and evaluation criterion,the mixing characteristics of different injection schemes were studied in detail.It was found that for the mixing field of supersonic transverse jet,the near-field mixing is controlled by convection transport while the far-field mixing is controlled by mass diffusion;the circular-hole injection causes a loss of total pressure comparable to the slot injection,but can induce a much higher mixing efficiency because of its 3-D flow characteristic;the variation of injection angle under circular-hole injection mainly affects the near-field mixing degree,and among the five injection angles studied in the present paper,angle 120° is the optimal one;with the increase of the ratio between injector space and diameter,the induced mixing efficiency increases while the caused loss of total pressure can grow greatly;the two-stage injection method designed through reducing the injector area to keep the same hydrogen mass flowrate can induce a much higher mixing efficiency while only a bit larger loss of total pressure when compared to the single-stage injection,and hence the two-stage injection is superior to the single-stage injection.The research results can direct the design of the fuel injection method in the combustor of scramjet engine.展开更多
This paper presents a numerical investigation of an active tip-clearance control method based on cooling injectionfrom the blade tip surface. It aims to study the influences of air injection on controlling tip clearan...This paper presents a numerical investigation of an active tip-clearance control method based on cooling injectionfrom the blade tip surface. It aims to study the influences of air injection on controlling tip clearance flow, withemphasis on the effects of the injection location on secondary flow and the potential thermal benefits from thecooling jet. The results show that injection location plays an important role in the redistribution of secondary flowwithin the cascade passage. Injection located much closer to the pressure-side comer performs better in reducingtip clearance massflow and its associated losses. However, it also intensifies tip passage vortex, due to less restraintderiving from the reduced tip clearance vortex. Lower plenum total pressure is required to inject equivalentamount of cooling air, but the heat transfer condition on the blade tip surface is a bit worse than that with injectionfrom the reattachment region. Thus the optimum location of air injection should be at the tip separation vortex region.展开更多
Based on the flux equivalent principle of a single fracture, the discrete fracture concept was developed, in which the macroscopic fractures are explicitly described as (n-l) dimensional geometry element. On the fun...Based on the flux equivalent principle of a single fracture, the discrete fracture concept was developed, in which the macroscopic fractures are explicitly described as (n-l) dimensional geometry element. On the fundamental of this simplification, the discrete-fractured model was developed which is suitable for all types of fractured porous media. The principle of discrete-fractured model was introduced in detail, and the general mathematical model was expressed subsequently. The fully coupling discrete-fractured mathematical model was implemented using Galerkin finite element method. The validity and accuracy of the model were shown through the Buckley-Leverett problem in a single fracture. Then the discrete-fractured model was applied to the two different type fractured porous media. The effect of fractures on the water flooding in fractured reservoirs was investigated. The numerical results showed that the fractures made the porous media more heterogeneous and anisotropic, and that the orientation, size, type of fracture and the connectivity of fractures network have important impacts on the two-phase flow.展开更多
Immiscible kerosene-water two-phase flows in microchannels connected by a T-junction were numerically studied by a Lattice Boltzmann (LB) method based on field mediators.The two-phase flow lattice Boltzmann model was ...Immiscible kerosene-water two-phase flows in microchannels connected by a T-junction were numerically studied by a Lattice Boltzmann (LB) method based on field mediators.The two-phase flow lattice Boltzmann model was first validated and improved by several test cases of a still droplet.The five distinct flow regimes of the kerosene-water system,previously identified in the experiments from Zhao et al.,were reproduced.The quantitative and qualitative agreement between the simulations and the experimental data show the effectiveness of the numerical method.The roles of the interfacial tension and contact angle on the flow patterns and shapes of droplets were discussed and highlighted according to the numerical results based on the improved two-phase LB model.This work demonstrated that the developed LBM simulator is a viable tool to study immiscible two-phase flows in microchannels,and such a tool could provide tangible guidance for the design of various microfluidic devices that involve immiscible multi-phase flows.展开更多
In energy industries, it is always of difficulty to produce high heat value(HHV) gas continuously using pulverized coal. In this paper, a new type furnace for partitioned alternative gasification using pulverized co...In energy industries, it is always of difficulty to produce high heat value(HHV) gas continuously using pulverized coal. In this paper, a new type furnace for partitioned alternative gasification using pulverized coal is developed, in which the oxidation and reduction reaction occur alternatively with the dropping of pulverized coal and finally HHV gas could be continuously obtained at the reduction zone exit and low heat value(LHV) gas at the oxidation zone exit. Furthermore, the gasification characteristics and their factors in furnace are numerically simulated under two dimensional model with a self-coded program, based on heat, mass and energy transfer as well as reaction principles. It is found that the producing rate of HHV gas is 1.10Nm3/kg with heat value of ll.72MJ/Nm3, how- ever, that of LHV gas is 2.58Nm3/kg with heat value of 5.30MJ/Nm3, and the coal gas efficiency is 81.16% under optimized conditions.展开更多
Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely red...Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely reduce the cracking and durability problems associated with brittleness of concrete.In this paper,a simplified constitutive model of the ECC material was applied to simulate the flexural behaviors of the steel reinforced ECC and ECC/concrete composite beams with finite element method.The simulation results are found to be in good agreement with test results,indicating that the finite element model is reasonably accurate in simulating the flexural behaviors of the steel reinforced ECC flexural members.The effects of the ECC modulus,ECC tensile ductility,ECC thickness and ECC position on flexural behaviors in terms of ultimate moment,deflection and the maximum crack width of the steel reinforced ECC or ECC/concrete composite beam are hence evaluated.展开更多
An aggregate generation and packing algorithm based on Monte-Carlo method is developed to express the aggregate random distribution in cement concrete. A mesoscale model is proposed on the basis of the algorithm. In t...An aggregate generation and packing algorithm based on Monte-Carlo method is developed to express the aggregate random distribution in cement concrete. A mesoscale model is proposed on the basis of the algorithm. In this model, the concrete con- sists of three parts, namely coarse aggregate, cement matrix and the interracial transition zone (ITZ) between them. To verify the proposed model, a three-point bending beam test was performed and a series of two-dimensional mesoscale concrete mod- els were generated for crack behavior investigation. The results indicate that the numerical model proposed in this study is helpful in modeling crack behavior of concrete, and that treating concrete as heterogeneous material is very important in frac- ture modeling.展开更多
A spectral calibration technique, a data processing method and the importance of calibration and re-sampling methods for the spectral domain optical coherence tomography system were numerically studied, targeted to op...A spectral calibration technique, a data processing method and the importance of calibration and re-sampling methods for the spectral domain optical coherence tomography system were numerically studied, targeted to optical coherence tomography (OCT) signal processing implementation under graphics processing unit (GPU) architecture. Accurately, assigning the wavelength to each pixel of the detector is of paramount importance to obtain high quality images and increase signal to noise ratio (SNR). High quality imaging can be achieved by proper calibration methods, here performed by phase calibration and interpolation. SNR was assessed employing two approaches, single spectrum moving window averaging and consecutive spectra data averaging, to investigate the optimized method and factor for background noise reduction. It was demonstrated that the consecutive spectra averaging had better SNR performance.展开更多
By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a...By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a magnetic field, the results obtained from the coupled cluster method and density matrix renormalization group method both show that the ground state of the aiternating chain is a gapped dimerized state when the parameter a exceeds a critical point ac. The value of the critical points can be determined precisely by a detailed investigation of the behavior of the spin gap. The system therefore possesses an m = 0 plateau state in the presence of a magnetic field When a 〉 ac. In addition to the m = 0 plateau state, the results of density matrix renormaiization group indicate that there is an m = 1/4 plateau state that occurs between two critical fields in the alternating chain if a 〉 1. The mechanism for the m = 1/4 plateau state and the critical behavior of the magnetization as one approaches this plateau state are also discussed.展开更多
Applying a fully nonlinear numerical scheme with second-order temporal and spatial precision,nonlinear interactions of gravity waves are simulated and the matching relationships of the wavelengths and frequencies of t...Applying a fully nonlinear numerical scheme with second-order temporal and spatial precision,nonlinear interactions of gravity waves are simulated and the matching relationships of the wavelengths and frequencies of the interacting waves are discussed.In resonant interactions,the wavelengths of the excited wave are in good agreement with the values derived from sum or difference resonant conditions,and the frequencies of the three waves also satisfy the matching condition.Since the interacting waves obey the resonant conditions,resonant interactions have a reversible feature that for a resonant wave triad,any two waves are selected to be the initial perturbations,and the third wave can then be excited through sum or difference resonant interaction.The numerical results for nonresonant triads show that in nonresonant interactions,the wave vectors tend to approximately match in a single direction,generally in the horizontal direction.The frequency of the excited wave is close to the matching value,and the degree of mismatching of frequencies may depend on the combined effect of both the wavenumber and frequency mismatches that should benefit energy exchange to the greatest extent.The matching and mismatching relationships in nonresonant interactions differ from the results of weak interaction theory that the wave vectors are required to satisfy the resonant matching condition but the frequencies are permitted to mismatch and oscillate with amplitude of half the mismatching frequency.Nonresonant excitation has an irreversible characteristic,which is different from what is found for the resonant interaction.For specified initial primary and secondary waves,it is difficult to predict the values of the mismatching wavenumber and frequency for the excited wave owing to the complexity.展开更多
基金Supported by the National Basic Research Program of China(2013CB632601)the National Science Fund for Distinguished Young Scholars(21025627)+1 种基金the National Natural Science Foundation of China(21276256,21106150)the National High Technology Research and Development Program of China(2012AA03A606)
文摘This work presents a numerical investigation on steady internal, external and surface flows of a liquid sphere immersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation is adopted to solve the governing equations of two-phase flow in a 3-D spherical coordinate system. Numerical results show that the streamlines for Re = 0 are closed Jeffery orbits on the surface of the liquid sphere, and also closed curves outside and inside the liquid sphere. However, the streamlines have intricate and non-closed structures for Re ≠ 0. The flow structure is dependent on the values of Reynolds number and interior-to-exterior viscosity ratio.
基金Supported by EPSRC/FSC (EP/I502033/1) and Leverhulme Trust (ECF/40348), UK
文摘Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great concem. This paper uses the quasi arbitrary Lagrangian Eulerian finite element method (QALE-FEM), based on the fully nonlinear potential theory (FNPT), to numerically investigate the interaction between two 3-D floating structures, which undergo motions with 6 degrees of freedom (DOFs), and are subjected to waves with different incident angles. The transient behaviours of floating structures, the effect of the accompanied structures, and the nonlinearity on the motion of and the wave loads on the structures are the main focuses of the study. The investigation reveals an important transient effects causing considerably larger structure motion than that in steady state. The results also indicate that the accompanied structure in close proximity enhances the interaction between different motion modes and results in stronger nonlinearity causing 2hal-order component to be of similar significance to the fundamental one.
基金Foundation item: Supported by the National Natural Science Foundation of China(10647112, 10871040) Acknowledgement The authors are in debt to thank the helpful discussions with Prof Qin and Dr A P Deng.
文摘A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.
文摘A numerical method using AUSMDV scheme and k-ω SST turbulence model with an explicit compressibility correction was developed,and a 3-D numerical simulation of a supersonic flow field with a vertical sonic jet of hydrogen was performed.Good agreement between numerical results and experimental data validated the reliability of the numerical method.Whereafter,two parameters,mass-weighted average total pressure and mixing efficiency,were defined to evaluate the mixing performance of different injection schemes.Based on the numerical method and evaluation criterion,the mixing characteristics of different injection schemes were studied in detail.It was found that for the mixing field of supersonic transverse jet,the near-field mixing is controlled by convection transport while the far-field mixing is controlled by mass diffusion;the circular-hole injection causes a loss of total pressure comparable to the slot injection,but can induce a much higher mixing efficiency because of its 3-D flow characteristic;the variation of injection angle under circular-hole injection mainly affects the near-field mixing degree,and among the five injection angles studied in the present paper,angle 120° is the optimal one;with the increase of the ratio between injector space and diameter,the induced mixing efficiency increases while the caused loss of total pressure can grow greatly;the two-stage injection method designed through reducing the injector area to keep the same hydrogen mass flowrate can induce a much higher mixing efficiency while only a bit larger loss of total pressure when compared to the single-stage injection,and hence the two-stage injection is superior to the single-stage injection.The research results can direct the design of the fuel injection method in the combustor of scramjet engine.
文摘This paper presents a numerical investigation of an active tip-clearance control method based on cooling injectionfrom the blade tip surface. It aims to study the influences of air injection on controlling tip clearance flow, withemphasis on the effects of the injection location on secondary flow and the potential thermal benefits from thecooling jet. The results show that injection location plays an important role in the redistribution of secondary flowwithin the cascade passage. Injection located much closer to the pressure-side comer performs better in reducingtip clearance massflow and its associated losses. However, it also intensifies tip passage vortex, due to less restraintderiving from the reduced tip clearance vortex. Lower plenum total pressure is required to inject equivalentamount of cooling air, but the heat transfer condition on the blade tip surface is a bit worse than that with injectionfrom the reattachment region. Thus the optimum location of air injection should be at the tip separation vortex region.
基金supported by the National Basic Research Program of China("973"Program)(Grant No.2011CB20100)the Important National Science and Technology Project of China(Grant No.2011ZX05014- 005-003HZ)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20090133110006)the Fundamental Research Funds for the Central Universities(Grant No. 09CX04005A)
文摘Based on the flux equivalent principle of a single fracture, the discrete fracture concept was developed, in which the macroscopic fractures are explicitly described as (n-l) dimensional geometry element. On the fundamental of this simplification, the discrete-fractured model was developed which is suitable for all types of fractured porous media. The principle of discrete-fractured model was introduced in detail, and the general mathematical model was expressed subsequently. The fully coupling discrete-fractured mathematical model was implemented using Galerkin finite element method. The validity and accuracy of the model were shown through the Buckley-Leverett problem in a single fracture. Then the discrete-fractured model was applied to the two different type fractured porous media. The effect of fractures on the water flooding in fractured reservoirs was investigated. The numerical results showed that the fractures made the porous media more heterogeneous and anisotropic, and that the orientation, size, type of fracture and the connectivity of fractures network have important impacts on the two-phase flow.
基金supported by Corning Incorporated, the National Natural Science Foundation of China (20990224, 20976177)National Science Fund for Distinguished Young Scholars (21025627)the National Basic Research Program of China (2009CB623406)
文摘Immiscible kerosene-water two-phase flows in microchannels connected by a T-junction were numerically studied by a Lattice Boltzmann (LB) method based on field mediators.The two-phase flow lattice Boltzmann model was first validated and improved by several test cases of a still droplet.The five distinct flow regimes of the kerosene-water system,previously identified in the experiments from Zhao et al.,were reproduced.The quantitative and qualitative agreement between the simulations and the experimental data show the effectiveness of the numerical method.The roles of the interfacial tension and contact angle on the flow patterns and shapes of droplets were discussed and highlighted according to the numerical results based on the improved two-phase LB model.This work demonstrated that the developed LBM simulator is a viable tool to study immiscible two-phase flows in microchannels,and such a tool could provide tangible guidance for the design of various microfluidic devices that involve immiscible multi-phase flows.
文摘In energy industries, it is always of difficulty to produce high heat value(HHV) gas continuously using pulverized coal. In this paper, a new type furnace for partitioned alternative gasification using pulverized coal is developed, in which the oxidation and reduction reaction occur alternatively with the dropping of pulverized coal and finally HHV gas could be continuously obtained at the reduction zone exit and low heat value(LHV) gas at the oxidation zone exit. Furthermore, the gasification characteristics and their factors in furnace are numerically simulated under two dimensional model with a self-coded program, based on heat, mass and energy transfer as well as reaction principles. It is found that the producing rate of HHV gas is 1.10Nm3/kg with heat value of ll.72MJ/Nm3, how- ever, that of LHV gas is 2.58Nm3/kg with heat value of 5.30MJ/Nm3, and the coal gas efficiency is 81.16% under optimized conditions.
基金supported by the National Natural Science Foundation of China(Grant No.51278118)Natural Science Foundation of Jiangsu Province(Grant No.BK2012756)+1 种基金Scientific Research Project of Ministry of Education of China(Grant No.113029A)Program for Special Talents in Six Fields of Jiangsu Province(Grant No.2011JZ010)
文摘Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely reduce the cracking and durability problems associated with brittleness of concrete.In this paper,a simplified constitutive model of the ECC material was applied to simulate the flexural behaviors of the steel reinforced ECC and ECC/concrete composite beams with finite element method.The simulation results are found to be in good agreement with test results,indicating that the finite element model is reasonably accurate in simulating the flexural behaviors of the steel reinforced ECC flexural members.The effects of the ECC modulus,ECC tensile ductility,ECC thickness and ECC position on flexural behaviors in terms of ultimate moment,deflection and the maximum crack width of the steel reinforced ECC or ECC/concrete composite beam are hence evaluated.
基金supported by the Specialized Research Fund for the Doctoral Program (SRFDP) of Higher Education of China (Grant No.20100092110049)Jiangsu Provincial Science Foundation Program of China (Grant No. BK2009259)+1 种基金the National Basic Research Program of China ("973" Project) (Grant No. 2009CB623202)the National Natural Science Foundation of China (Grant No. 11072060)
文摘An aggregate generation and packing algorithm based on Monte-Carlo method is developed to express the aggregate random distribution in cement concrete. A mesoscale model is proposed on the basis of the algorithm. In this model, the concrete con- sists of three parts, namely coarse aggregate, cement matrix and the interracial transition zone (ITZ) between them. To verify the proposed model, a three-point bending beam test was performed and a series of two-dimensional mesoscale concrete mod- els were generated for crack behavior investigation. The results indicate that the numerical model proposed in this study is helpful in modeling crack behavior of concrete, and that treating concrete as heterogeneous material is very important in frac- ture modeling.
文摘A spectral calibration technique, a data processing method and the importance of calibration and re-sampling methods for the spectral domain optical coherence tomography system were numerically studied, targeted to optical coherence tomography (OCT) signal processing implementation under graphics processing unit (GPU) architecture. Accurately, assigning the wavelength to each pixel of the detector is of paramount importance to obtain high quality images and increase signal to noise ratio (SNR). High quality imaging can be achieved by proper calibration methods, here performed by phase calibration and interpolation. SNR was assessed employing two approaches, single spectrum moving window averaging and consecutive spectra data averaging, to investigate the optimized method and factor for background noise reduction. It was demonstrated that the consecutive spectra averaging had better SNR performance.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10804053 and 61203147the Natural Science Foundation of Jiangsu Province under Grant No.BK20131428+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant No.13KJD140003the Scientific Research Foundation of Nanjing University of Posts and Telecommunications under Grant No.NY211008Qing Lan Project of Jiangsu Province
文摘By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a magnetic field, the results obtained from the coupled cluster method and density matrix renormalization group method both show that the ground state of the aiternating chain is a gapped dimerized state when the parameter a exceeds a critical point ac. The value of the critical points can be determined precisely by a detailed investigation of the behavior of the spin gap. The system therefore possesses an m = 0 plateau state in the presence of a magnetic field When a 〉 ac. In addition to the m = 0 plateau state, the results of density matrix renormaiization group indicate that there is an m = 1/4 plateau state that occurs between two critical fields in the alternating chain if a 〉 1. The mechanism for the m = 1/4 plateau state and the critical behavior of the magnetization as one approaches this plateau state are also discussed.
基金supported by National Natural Science Foundation of China (Grant Nos. 41074110,41174133 and 40825013)National Basic Research Program of China (Grant No. 2012CB825605)+2 种基金Ocean Public Welfare Scientific Research Project,State Oceanic Administration People’s Republic of China (Grant No. 201005017)China Meteorological Administration (Grant No. GYHY201106011)Fundamental Research Funds for the Central Universities
文摘Applying a fully nonlinear numerical scheme with second-order temporal and spatial precision,nonlinear interactions of gravity waves are simulated and the matching relationships of the wavelengths and frequencies of the interacting waves are discussed.In resonant interactions,the wavelengths of the excited wave are in good agreement with the values derived from sum or difference resonant conditions,and the frequencies of the three waves also satisfy the matching condition.Since the interacting waves obey the resonant conditions,resonant interactions have a reversible feature that for a resonant wave triad,any two waves are selected to be the initial perturbations,and the third wave can then be excited through sum or difference resonant interaction.The numerical results for nonresonant triads show that in nonresonant interactions,the wave vectors tend to approximately match in a single direction,generally in the horizontal direction.The frequency of the excited wave is close to the matching value,and the degree of mismatching of frequencies may depend on the combined effect of both the wavenumber and frequency mismatches that should benefit energy exchange to the greatest extent.The matching and mismatching relationships in nonresonant interactions differ from the results of weak interaction theory that the wave vectors are required to satisfy the resonant matching condition but the frequencies are permitted to mismatch and oscillate with amplitude of half the mismatching frequency.Nonresonant excitation has an irreversible characteristic,which is different from what is found for the resonant interaction.For specified initial primary and secondary waves,it is difficult to predict the values of the mismatching wavenumber and frequency for the excited wave owing to the complexity.