The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be ...The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be applied to the Internet on a multi-view data set,a multi-view K-multiple-means(MKMM)clustering method is proposed in this paper.The new algorithm introduces view weight parameter,reserves the design of setting multiple subclasses,makes the number of clusters as constraint and obtains clusters by solving optimization problem.The new algorithm is compared with some popular multi-view clustering algorithms.The effectiveness of the new algorithm is proved through the analysis of the experimental results.展开更多
基金National Youth Natural Science Foundationof China(No.61806006)Innovation Program for Graduate of Jiangsu Province(No.KYLX160-781)Project Supported by Jiangsu University Superior Discipline Construction Project。
文摘The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be applied to the Internet on a multi-view data set,a multi-view K-multiple-means(MKMM)clustering method is proposed in this paper.The new algorithm introduces view weight parameter,reserves the design of setting multiple subclasses,makes the number of clusters as constraint and obtains clusters by solving optimization problem.The new algorithm is compared with some popular multi-view clustering algorithms.The effectiveness of the new algorithm is proved through the analysis of the experimental results.