Numerical simulations are performed on the interface with large deformation induced by the interaction between a moving shock and two consecutive bubbles. The high performance of the level set method for multi-materia...Numerical simulations are performed on the interface with large deformation induced by the interaction between a moving shock and two consecutive bubbles. The high performance of the level set method for multi-material interfaces is demonstrated. Discontinuous Galerkin finite element method is used to solve Euleri- an equations. And the fifth-order weighted essentially non-oscillatory (WENO) scheme is used to solve the level set equation for capturing multi-material interfaces. The ghost fluid method is used to deal with the interfacial boundary condition. Results are obtained for two bubble interacting with a moving shock. The contours of the constant density and the pressure at different time are given. In the computational domain, three different cases are considered, i.e. two helium bubbles, a helium bubble followed by an R22 bubble in the direction of the moving shock, and an R22 bubble followed by a helium bubble. Computational results indicate that multi-mate- rial interfaces can be properly captured by the level set method. Therefore, for problems involving the flow of three different materials with two different interfaces, each interface separating two different materials can be similarly handled.展开更多
Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classic...Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.展开更多
In this paper, the MKdV equation with nonuniformity terms is discussed. It relates to the eigenvalue problem The evolution laws of scattering data for (1. 3) are derived and the inverse scattering solutions-soliton so...In this paper, the MKdV equation with nonuniformity terms is discussed. It relates to the eigenvalue problem The evolution laws of scattering data for (1. 3) are derived and the inverse scattering solutions-soliton solutions of eq(1. 1) are obtained. In the end of the paper, the single soliton solution and Double soliton solution are discussed. The result extends the situation in [1].展开更多
The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of ...The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix. The multisection method for solving the generalized eigenproblem applied significantly in many science and engineering domains has not been studied. The parallel region preserving multisection method (PRM for short) for solving generalized eigenproblems of large sparse and real symmetric matrix is presented in this paper. This method not only retains the advantages of the conventional determinant search method (DS for short), but also overcomes its disadvantages such as leaking roots and disconvergence. We have tested the method on the YH 1 vector computer, and compared it with the parallel region preserving determinant search method the parallel region preserving bisection method (PRB for short). The numerical results show that PRM has a higher speed up, for instance, it attains the speed up of 7.7 when the scale of the problem is 2 114 and the eigenpair found is 3, and PRM is superior to PRB when the scale of the problem is large.展开更多
A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demon...A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.展开更多
Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved ...Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved some questionable points [T.C. Au Yeung and P.C.W. Fung, J. Phys. A 21 (1988) 3575]. In this note, simple results are obtained in terms of an affine parameter and a Galileo transformation is introduced to ensure the results compatible with those derived from the inverse scattering transform.展开更多
基金Supported by the National Natural Science Foundation of China(10476011)~~
文摘Numerical simulations are performed on the interface with large deformation induced by the interaction between a moving shock and two consecutive bubbles. The high performance of the level set method for multi-material interfaces is demonstrated. Discontinuous Galerkin finite element method is used to solve Euleri- an equations. And the fifth-order weighted essentially non-oscillatory (WENO) scheme is used to solve the level set equation for capturing multi-material interfaces. The ghost fluid method is used to deal with the interfacial boundary condition. Results are obtained for two bubble interacting with a moving shock. The contours of the constant density and the pressure at different time are given. In the computational domain, three different cases are considered, i.e. two helium bubbles, a helium bubble followed by an R22 bubble in the direction of the moving shock, and an R22 bubble followed by a helium bubble. Computational results indicate that multi-mate- rial interfaces can be properly captured by the level set method. Therefore, for problems involving the flow of three different materials with two different interfaces, each interface separating two different materials can be similarly handled.
文摘Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.
文摘In this paper, the MKdV equation with nonuniformity terms is discussed. It relates to the eigenvalue problem The evolution laws of scattering data for (1. 3) are derived and the inverse scattering solutions-soliton solutions of eq(1. 1) are obtained. In the end of the paper, the single soliton solution and Double soliton solution are discussed. The result extends the situation in [1].
文摘The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix. The multisection method for solving the generalized eigenproblem applied significantly in many science and engineering domains has not been studied. The parallel region preserving multisection method (PRM for short) for solving generalized eigenproblems of large sparse and real symmetric matrix is presented in this paper. This method not only retains the advantages of the conventional determinant search method (DS for short), but also overcomes its disadvantages such as leaking roots and disconvergence. We have tested the method on the YH 1 vector computer, and compared it with the parallel region preserving determinant search method the parallel region preserving bisection method (PRB for short). The numerical results show that PRM has a higher speed up, for instance, it attains the speed up of 7.7 when the scale of the problem is 2 114 and the eigenpair found is 3, and PRM is superior to PRB when the scale of the problem is large.
文摘A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.
文摘Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved some questionable points [T.C. Au Yeung and P.C.W. Fung, J. Phys. A 21 (1988) 3575]. In this note, simple results are obtained in terms of an affine parameter and a Galileo transformation is introduced to ensure the results compatible with those derived from the inverse scattering transform.