期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
倒数递推数列 被引量:1
1
作者 朱艺华 《大学数学》 1994年第4期50-54,共5页
本文给出了倒数递推数列的定义,求出了它的通项公式,并指出它与二阶线性差分数列的内在联系。
关键词 倒数递推数列
全文增补中
数列求和方法例谈
2
作者 张秀邦 《青海教育》 1999年第5期39-39,共1页
关键词 数列求和 等差数列 求和问题 等比数列 数列前N项和 对应项之积 倒数数列 错项相减 特点与规律 求和方法
下载PDF
一道普特南数学竞赛试题的探究
3
作者 石冶郝 《中学数学月刊》 2008年第5期48-49,共2页
第16届普特南数学竞赛有一道试题:
关键词 数学 竞赛试题 数列倒数 普特南
下载PDF
正项级数敛散性的密率判别法 被引量:3
4
作者 张新元 吕冰清 《南都学坛(南阳师专学报)》 2000年第3期23-25,共3页
借鉴数论方法中的密率论 ,给出判别正项级数敛散性的密率判别法 。
关键词 正项级数 倒数数列 敛散性 密率差别法 密率函数
下载PDF
正项级数敛散性的密率判别法
5
作者 吕冰清 黄静 《黄河水利职业技术学院学报》 2000年第3期47-48,共2页
借鉴数论方法中的密率论 ,给出判别正项级数敛散性的密率判别法 ,此方法特别适用于判定一些较难或不能给出通项表达式的级数的敛散性。
关键词 正项级数 倒数数列 密率 敛散性
下载PDF
Note on the Reciprocal Sum of a Sum-Free Sequence 被引量:1
6
作者 杨仕椿 《Journal of Mathematical Research and Exposition》 CSCD 2009年第4期753-755,共3页
An infinite integer sequence {1 ≤ a1 〈 a2 〈 ... } is called A-sequence, if no ai is sum of distinct members of the sequence other than ai. We give an example for the A-sequence, and the reciprocal sum of element... An infinite integer sequence {1 ≤ a1 〈 a2 〈 ... } is called A-sequence, if no ai is sum of distinct members of the sequence other than ai. We give an example for the A-sequence, and the reciprocal sum of elements is∑1/ai〉 2.065436491, which improves slightly the related upper bounds for the reciprocal sums of sum-free sequences. 展开更多
关键词 sum-free sequence reciprocal sum upper estimate
下载PDF
On the reciprocal sum of a sum-free sequence 被引量:4
7
作者 CHEN YongGao 《Science China Mathematics》 SCIE 2013年第5期951-966,共16页
Let ,4 = {1 ≤ a1 〈 a2 〈 ...} be a sequence of integers. ,4 is called a sum-free sequence if no ai is the sum of two or more distinct earlier terms. Let A be the supremum of reciprocal sums of sum-free sequences. In... Let ,4 = {1 ≤ a1 〈 a2 〈 ...} be a sequence of integers. ,4 is called a sum-free sequence if no ai is the sum of two or more distinct earlier terms. Let A be the supremum of reciprocal sums of sum-free sequences. In 1962, ErdSs proved that A 〈 103. A sum-free sequence must satisfy an ≥ (k ~ 1)(n - ak) for all k, n ≥ 1. A sequence satisfying this inequality is called a x-sequence. In 1977, Levine and O'Sullivan proved that a x-sequence A with a large reciprocal sum must have al = 1, a2 = 2, and a3 = 4. This can be used to prove that λ 〈 4. In this paper, it is proved that a x-sequence A with a large reciprocal sum must have its initial 16 terms: 1, 2, 4, 6, 9, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, and 50. This together with some new techniques can be used to prove that λ 〈 3.0752. Three conjectures are posed. 展开更多
关键词 sum-free sequences A-sequences g-sequences Erdos reciprocal sum constants
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部