期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
消元思想在数列证明中的应用
1
作者 叶扩会 《科技视界》 2018年第28期204-204,207,共2页
本文将方程消元的思想运用到数列证明中,先对所研究的数列进行作商(差),再进行有效消元,最后化简得结论。方法简单,程序化,容易掌握。并列举了消元思想在高考真题中的应用。
关键词 数列证明 消元思想 高考真题
下载PDF
张角公式在证明等差数列中的应用
2
作者 吴春胜 《中学教研(数学版)》 2003年第9期22-23,共2页
平面几何中有一个与面积关系有关的张角公式,一般不引人注目,但在教学时发现这一公式在证明线段a,b,c成等差数列中,有着极其广泛的应用。现分两方面介绍如下,供高中师生教与学时参考。
关键词 张角公式 等差数列证明 高中 数学 解法
下载PDF
莫为浮云遮望眼——例谈数列的证明 洞悉问题的本质
3
作者 肖春梅 《数理化解题研究(高中版)》 2017年第9期50-51,共2页
如果能看清问题的本质,揭开题目的表象包装,拨开遮住我们眼睛的那片浮云,我们就可以以不变应万变,触类旁通.
关键词 数列证明 探究本质 数学学习方法
下载PDF
证明数列不等式的几种常用放缩策略
4
作者 朱胜强 《中学生理科应试》 2003年第10期8-9,共2页
关键词 数列不等式证明 放缩策略 高中 数学 解法
下载PDF
一道数列高考题的探究与推广
5
作者 黄艳 沈钢 《中学数学研究(华南师范大学)(上半月)》 2018年第12期10-11,共2页
数列是每年高考的热点,求数列通项公式是高考数列题的第一问,大部分数列题是基本量的运算,有些省份的数列题第一问是证明数列为等差或等比数列.笔者通过本文主要从数列证明题中揭示本质,让学生从本质上理解并掌握其中的规律.
关键词 数列证明 数列通项公式 构造新数列
下载PDF
数学归纳法证题的难点及教学探究
6
作者 罗居文 《数学学习与研究》 2010年第17期39-39,共1页
数学归纳法是证明某些与自然数有关且具有递推性的数学命题,通过“有限”来解决“无限”问题的一种严谨且十分重要的数学证明方法.教学中许多学生没有理解数学归纳法的实质,只知其然,不知其所以然,证题停留在机械模仿,盲目套用数... 数学归纳法是证明某些与自然数有关且具有递推性的数学命题,通过“有限”来解决“无限”问题的一种严谨且十分重要的数学证明方法.教学中许多学生没有理解数学归纳法的实质,只知其然,不知其所以然,证题停留在机械模仿,盲目套用数学归纳法的证题格式,造成不必要的失误.为了让学生能正确掌握并灵活运用数学归纳法,根据多年高中数学教学的经验,对数学归纳法证题的难点及教学作出探讨. 展开更多
关键词 数学归纳法 证明等式型命题 证明整除性命题 证明数列问题 证明不等式命题 证明几何命题
下载PDF
On the reciprocal sum of a sum-free sequence 被引量:4
7
作者 CHEN YongGao 《Science China Mathematics》 SCIE 2013年第5期951-966,共16页
Let ,4 = {1 ≤ a1 〈 a2 〈 ...} be a sequence of integers. ,4 is called a sum-free sequence if no ai is the sum of two or more distinct earlier terms. Let A be the supremum of reciprocal sums of sum-free sequences. In... Let ,4 = {1 ≤ a1 〈 a2 〈 ...} be a sequence of integers. ,4 is called a sum-free sequence if no ai is the sum of two or more distinct earlier terms. Let A be the supremum of reciprocal sums of sum-free sequences. In 1962, ErdSs proved that A 〈 103. A sum-free sequence must satisfy an ≥ (k ~ 1)(n - ak) for all k, n ≥ 1. A sequence satisfying this inequality is called a x-sequence. In 1977, Levine and O'Sullivan proved that a x-sequence A with a large reciprocal sum must have al = 1, a2 = 2, and a3 = 4. This can be used to prove that λ 〈 4. In this paper, it is proved that a x-sequence A with a large reciprocal sum must have its initial 16 terms: 1, 2, 4, 6, 9, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, and 50. This together with some new techniques can be used to prove that λ 〈 3.0752. Three conjectures are posed. 展开更多
关键词 sum-free sequences A-sequences g-sequences Erdos reciprocal sum constants
原文传递
ON THE NONEXISTENCE OF NONTRIVIAL SMALL CYCLES OF THE μ FUNCTION IN 3x+ 1 CONJECTURE 被引量:1
8
作者 Dengguo FENG Xiubin FAN +1 位作者 Liping DING Zhangyi WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第6期1215-1222,共8页
This paper studies the property of the recursive sequences in the 3x + 1 conjecture. The authors introduce the concept of μ function, with which the 3x + 1 conjecture can be transformed into two other conjectures:... This paper studies the property of the recursive sequences in the 3x + 1 conjecture. The authors introduce the concept of μ function, with which the 3x + 1 conjecture can be transformed into two other conjectures: one is eventually periodic conjecture of the μ function and the other is periodic point conjecture. The authors prove that the 3x + 1 conjecture is equivalent to the two conjectures above. In 2007, J. L. Simons proved the non-existence of nontrivial 2-cycle for the T function. In this paper, the authors prove that the μ function has nol-periodic points for 2 ≤ 1 ≤12. In 2005, J. L. Simons and B. M. M de Weger proved that there is no nontrivial/-cycle for the T function for 1 ≤68, and in this paper, the authors prove that there is no nontrivial l-cycle for the μ function for 2 ≤ 1≤ 102. 展开更多
关键词 Diophantine equation eventual period periodic point 3x 1 conjecture.
原文传递
Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences 被引量:2
9
作者 WANG Yi ZHU BaoXuan 《Science China Mathematics》 SCIE 2014年第11期2429-2435,共7页
In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {zn+1/zn}is increasing(r... In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {zn+1/zn}is increasing(resp.,decreasing),then the sequence {n√zn} is strictly increasing(resp.,decreasing) subject to a certain initial condition. We also give some sufficient conditions when {zn+1/zn} is increasing,which is equivalent to the log-convexity of {zn}. As consequences,a series of conjectures of Zhi-Wei Sun are verified in a unified approach. 展开更多
关键词 SEQUENCES MONOTONICITY LOG-CONVEXITY LOG-CONCAVITY
原文传递
A Note on the Completeness of an Exponential Type Sequence
10
作者 Jinhui FANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第4期527-532,共6页
For any given coprime integers p and q greater than 1, in 1959, B proved that all sufficiently large integers can be expressed as a sum of pairwise terms of the form p^aq^b. As Davenport observed, Birch's proof can b... For any given coprime integers p and q greater than 1, in 1959, B proved that all sufficiently large integers can be expressed as a sum of pairwise terms of the form p^aq^b. As Davenport observed, Birch's proof can be modified that the exponent b can be bounded in terms of p and q. In 2000, N. Hegyvari effective version of this bound. The author improves this bound. 展开更多
关键词 Complete sequence Coprime Residue J. Birch distinct to show gave an
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部