In this paper a fuel cell emulator model suitable for each fuel cell type and power level is proposed. A power interface to the electronic load and a digital section are provided. The fuel cell steady-state, dynamic a...In this paper a fuel cell emulator model suitable for each fuel cell type and power level is proposed. A power interface to the electronic load and a digital section are provided. The fuel cell steady-state, dynamic and thermal behaviour is modeled by the digital controller. The emulator architecture is deeply analyzed and remarks on hardware implementation algorithms are provided for further applications. The system is tested on a 10 W Proton Exchange Membrane (PEM) fuel cell and the high accuracy of the proposed emulator is shown by the comparison between experimental and simulation results.展开更多
The mechanism of heat transfer in a crossflow moving packed bed heat transfer exchanger is analyzed and a two dimensional heat transfer mathematical model has been developed based on the two fluid model (TFM)approach,...The mechanism of heat transfer in a crossflow moving packed bed heat transfer exchanger is analyzed and a two dimensional heat transfer mathematical model has been developed based on the two fluid model (TFM)approach, in which both phases are considered to be continuous and fully interpenetrating.This model is solved by means of numerical method and the results are approximately in agreement with the experimental ones.展开更多
In this paper, heat transfer of the ceramic honeycomb regenerator was numerically simulated based on the computational fluid dynamics numerical analysis software CFX5. The longitudinal temperature distribution of rege...In this paper, heat transfer of the ceramic honeycomb regenerator was numerically simulated based on the computational fluid dynamics numerical analysis software CFX5. The longitudinal temperature distribution of regenerator and gas were obtained. The variation of temperature with time was discussed. In addition, the effects of some parameters such as switching time, gas temperature at the inlet of regenerator, height of regenerator and specific heat of the regenerative materials on heat saturating time were discussed. It provided primarily theoretic basis for further study of regenerative heat transfer mechanism.展开更多
文摘In this paper a fuel cell emulator model suitable for each fuel cell type and power level is proposed. A power interface to the electronic load and a digital section are provided. The fuel cell steady-state, dynamic and thermal behaviour is modeled by the digital controller. The emulator architecture is deeply analyzed and remarks on hardware implementation algorithms are provided for further applications. The system is tested on a 10 W Proton Exchange Membrane (PEM) fuel cell and the high accuracy of the proposed emulator is shown by the comparison between experimental and simulation results.
文摘The mechanism of heat transfer in a crossflow moving packed bed heat transfer exchanger is analyzed and a two dimensional heat transfer mathematical model has been developed based on the two fluid model (TFM)approach, in which both phases are considered to be continuous and fully interpenetrating.This model is solved by means of numerical method and the results are approximately in agreement with the experimental ones.
基金The research is supported by National Natural Science Foundation of China (No.50276002).
文摘In this paper, heat transfer of the ceramic honeycomb regenerator was numerically simulated based on the computational fluid dynamics numerical analysis software CFX5. The longitudinal temperature distribution of regenerator and gas were obtained. The variation of temperature with time was discussed. In addition, the effects of some parameters such as switching time, gas temperature at the inlet of regenerator, height of regenerator and specific heat of the regenerative materials on heat saturating time were discussed. It provided primarily theoretic basis for further study of regenerative heat transfer mechanism.