矩阵乘卷积算法能够为各种卷积配置提供高性能基础实现,是面向给定芯片进行卷积性能优化的首要选择。针对国防科技大学自主研制的飞腾异构多核数字信号处理器(digital signal processor,DSP)芯片的特征以及矩阵乘卷积算法自身的特点,提...矩阵乘卷积算法能够为各种卷积配置提供高性能基础实现,是面向给定芯片进行卷积性能优化的首要选择。针对国防科技大学自主研制的飞腾异构多核数字信号处理器(digital signal processor,DSP)芯片的特征以及矩阵乘卷积算法自身的特点,提出了一种面向多核DSP架构的高性能并行矩阵乘卷积实现算法ftmEConv。该算法由输入特征图转换、卷积核转换、矩阵乘以及输出特征图转换这四个均运行在通用多核DSP上的并行化部分构成,通过有效挖掘通用DSP核中功能单元的潜力来提升各个部分的性能。实验结果表明,ftmEConv实现了高达42.90%的计算效率,与芯片上的其他矩阵乘卷积算法实现相比,获得了高达7.79倍的性能加速。展开更多
为解决双丝高速焊两路脉冲同步、交替、随机三种输出形式的协同控制问题,采用数字信号处理器(Digital signal processor,DSP)建立了基于DSP的双丝高速焊数字化协同控制系统。利用DSP内部集成的脉宽调制(Pulse width modulation,PWM)模块...为解决双丝高速焊两路脉冲同步、交替、随机三种输出形式的协同控制问题,采用数字信号处理器(Digital signal processor,DSP)建立了基于DSP的双丝高速焊数字化协同控制系统。利用DSP内部集成的脉宽调制(Pulse width modulation,PWM)模块,以软件方式实现了主、从机两台逆变电源PWM信号的直接数字化控制,从而实现主、从机的高频逆变和低频脉冲波形调制。利用单一DSP芯片实现了双丝高速焊同步、交替、随机三种脉冲相位输出形式。阐述数字化协同控制系统的软硬件设计。双丝高速焊试验结果表明,所设计的数字化协同控制系统满足设计要求,焊接过程稳定、焊接速度快、飞溅小、焊缝成型美观,能实现良好的双丝高速焊工艺。展开更多
文摘矩阵乘卷积算法能够为各种卷积配置提供高性能基础实现,是面向给定芯片进行卷积性能优化的首要选择。针对国防科技大学自主研制的飞腾异构多核数字信号处理器(digital signal processor,DSP)芯片的特征以及矩阵乘卷积算法自身的特点,提出了一种面向多核DSP架构的高性能并行矩阵乘卷积实现算法ftmEConv。该算法由输入特征图转换、卷积核转换、矩阵乘以及输出特征图转换这四个均运行在通用多核DSP上的并行化部分构成,通过有效挖掘通用DSP核中功能单元的潜力来提升各个部分的性能。实验结果表明,ftmEConv实现了高达42.90%的计算效率,与芯片上的其他矩阵乘卷积算法实现相比,获得了高达7.79倍的性能加速。
文摘为解决双丝高速焊两路脉冲同步、交替、随机三种输出形式的协同控制问题,采用数字信号处理器(Digital signal processor,DSP)建立了基于DSP的双丝高速焊数字化协同控制系统。利用DSP内部集成的脉宽调制(Pulse width modulation,PWM)模块,以软件方式实现了主、从机两台逆变电源PWM信号的直接数字化控制,从而实现主、从机的高频逆变和低频脉冲波形调制。利用单一DSP芯片实现了双丝高速焊同步、交替、随机三种脉冲相位输出形式。阐述数字化协同控制系统的软硬件设计。双丝高速焊试验结果表明,所设计的数字化协同控制系统满足设计要求,焊接过程稳定、焊接速度快、飞溅小、焊缝成型美观,能实现良好的双丝高速焊工艺。