-
题名基于深度学习的数字几何处理与分析技术研究进展
被引量:15
- 1
-
-
作者
夏清
李帅
郝爱民
赵沁平
-
机构
虚拟现实技术与系统国家重点实验室(北京航空航天大学)
-
出处
《计算机研究与发展》
EI
CSCD
北大核心
2019年第1期155-182,共28页
-
文摘
随着各种硬件传感器以及重建技术的快速发展,数字几何模型成为继音频、图像、视频之后的第4代数字媒体,并在多个领域得到广泛应用.传统的数字几何分析和处理方法主要建立在手工定义的模型特征之上,这类方法只对特定问题或者在特定条件下才有效.而深度学习,尤其是神经网络模型,在自然语言处理和图像处理方面的成功,展示了它作为数据特征提取工具的强大能力,因此越来越多地被用在数字几何处理领域.对近年来基于深度学习的数字几何处理与分析技术进行了综述,重点分析了模型匹配与检索、模型分类与分割、模型生成、模型修复与重建以及模型变形与编辑中的相关技术国内外最新研究进展,并指出了存在的主要问题和发展方向.
-
关键词
计算机图形学
数字几何处理与分析
深度学习
神经网络
研究进展综述
-
Keywords
computer graphics
digital geometry processing and analysis
deep learning
neural networks
research progress review
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-