The impact of anomalous sea surface temperature (SST) warming in the Kuroshio Extension in the previous winter on the East Asian summer monsoon (EASM) was investigated by performing simulation tests using NCAR CAM3.Th...The impact of anomalous sea surface temperature (SST) warming in the Kuroshio Extension in the previous winter on the East Asian summer monsoon (EASM) was investigated by performing simulation tests using NCAR CAM3.The results show that anomalous SST warming in the Kuroshio Extension in winter causes the enhancement and northward movement of the EASM.The monsoon indexes for East Asian summer monsoon and land-sea thermal difference,which characterize the intensity of the EASM,show an obvious increase during the onset period of the EASM.Moreover,the land-sea thermal difference is more sensitive to warmer SST.Low-level southwesterly monsoon is clearly strengthened meanwhile westerly flows north (south) of the subtropical westerly jet axis are strengthened (weakened) in northern China,South China Sea,and the Western Pacific Ocean to the east of the Philippines.While there is an obvious decrease in precipitation over the Japanese archipelago and adjacent oceans and over the area from the south of the Yangtze River in eastern China to the Qinling Mountains in southern China,precipitation increases notably in northern China,the South China Sea,the East China Sea,the Yellow Sea,and the Western Pacific to the east of the Philippines.North China is the key area where the response of the EASM to the SST anomalous warming in the Kuroshio Extension is prominent.The surface air temperature shows a warming trend.The warming in the entire troposphere between 30oN and 50oN increases the land-sea thermal contrast,which plays an important role in the enhancement of the EASM.Atmospheric circulation and precipitation anomalies in China and its adjacent regions have a close relationship with the enhancement of the Western Pacific subtropical high and its northward extension.展开更多
基金National Program on Key Basic Research Project of China (973 Program) (2007CB411805 2010CB428505)National Natural Science Foundation of China (40830958)
文摘The impact of anomalous sea surface temperature (SST) warming in the Kuroshio Extension in the previous winter on the East Asian summer monsoon (EASM) was investigated by performing simulation tests using NCAR CAM3.The results show that anomalous SST warming in the Kuroshio Extension in winter causes the enhancement and northward movement of the EASM.The monsoon indexes for East Asian summer monsoon and land-sea thermal difference,which characterize the intensity of the EASM,show an obvious increase during the onset period of the EASM.Moreover,the land-sea thermal difference is more sensitive to warmer SST.Low-level southwesterly monsoon is clearly strengthened meanwhile westerly flows north (south) of the subtropical westerly jet axis are strengthened (weakened) in northern China,South China Sea,and the Western Pacific Ocean to the east of the Philippines.While there is an obvious decrease in precipitation over the Japanese archipelago and adjacent oceans and over the area from the south of the Yangtze River in eastern China to the Qinling Mountains in southern China,precipitation increases notably in northern China,the South China Sea,the East China Sea,the Yellow Sea,and the Western Pacific to the east of the Philippines.North China is the key area where the response of the EASM to the SST anomalous warming in the Kuroshio Extension is prominent.The surface air temperature shows a warming trend.The warming in the entire troposphere between 30oN and 50oN increases the land-sea thermal contrast,which plays an important role in the enhancement of the EASM.Atmospheric circulation and precipitation anomalies in China and its adjacent regions have a close relationship with the enhancement of the Western Pacific subtropical high and its northward extension.