Depressions in landscapes function as buffers for water and sediment. A landscape with depressions has less runoff, less erosion and more sedimentation than that without depressions. Sinks in digital elevation models ...Depressions in landscapes function as buffers for water and sediment. A landscape with depressions has less runoff, less erosion and more sedimentation than that without depressions. Sinks in digital elevation models (DEMs) can be considered the real features that represent depressions in actual landscapes or spurious features that result from errors in DEM creation. In many hydrological and erosion models, all sinks are considered as spurious features and, as a result, these models do not deal with the sinks that represent real depressions. Consequently, the surface runoff and erosion are overestimated due to removing the depressions. Aiming at this problem, this paper presents a new method, which deal with the sinks that represent real depressions. The drainage network is extracted without changing the original DEM. The method includes four steps: detecting pits, detecting depressions, merging depressions, and extracting drainage network. Because the elevations of grid cells are not changed, the method can also avoid producing new fiat areas, which are always produced by the conventional filling methods. The proposed method was applied to the Xihanshui River basin, the upper reach of the Jialingjiang River basin, China, to automatically extract the drainage network based on DEM. The extracted drainage network agrees well with the reality and can be used for further hydrologic analysis and erosion estimation.展开更多
Based on the estimating rule of the normal vector angles between two adjacent terrain units, we use the concept of terrain complexity factor to quantify the terrain complexity of DEM, and then the formula of terrain c...Based on the estimating rule of the normal vector angles between two adjacent terrain units, we use the concept of terrain complexity factor to quantify the terrain complexity of DEM, and then the formula of terrain complexity factor in Raster DEM and TIN DEM is deduced theoretically. In order to make clear how the terrain complexity factor ECF and the average elevation h affect the accuracy of DEM terrain representation RMSEEt, the formula of Gauss synthetical surface is applied to simulate several real terrain surfaces, each of which has different terrain complexity. Through the statistical analysis of linear regression in simula- tion data, the linear equation between accuracy of DEM terrain representation RMSEEt, terrain complexity factor ECF and the average elevation h is achieved. A new method is provided to estimate the accuracy of DEM terrain representation RMSEEt with a certain terrain complexity and it gives convincing theoretical evidence for DEM production and the corresponding error research in the future.展开更多
基金supported by the Project of the National Natural Science Foundation of China (40671025)the Knowledge Innovation Project of the Chinese Academy of Sciences (No. KZCX2-YW-302)
文摘Depressions in landscapes function as buffers for water and sediment. A landscape with depressions has less runoff, less erosion and more sedimentation than that without depressions. Sinks in digital elevation models (DEMs) can be considered the real features that represent depressions in actual landscapes or spurious features that result from errors in DEM creation. In many hydrological and erosion models, all sinks are considered as spurious features and, as a result, these models do not deal with the sinks that represent real depressions. Consequently, the surface runoff and erosion are overestimated due to removing the depressions. Aiming at this problem, this paper presents a new method, which deal with the sinks that represent real depressions. The drainage network is extracted without changing the original DEM. The method includes four steps: detecting pits, detecting depressions, merging depressions, and extracting drainage network. Because the elevations of grid cells are not changed, the method can also avoid producing new fiat areas, which are always produced by the conventional filling methods. The proposed method was applied to the Xihanshui River basin, the upper reach of the Jialingjiang River basin, China, to automatically extract the drainage network based on DEM. The extracted drainage network agrees well with the reality and can be used for further hydrologic analysis and erosion estimation.
基金Supported by Innovation Program of Shanghai Municipal Education Commission (No.10ZZ25)the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping (No.200914)
文摘Based on the estimating rule of the normal vector angles between two adjacent terrain units, we use the concept of terrain complexity factor to quantify the terrain complexity of DEM, and then the formula of terrain complexity factor in Raster DEM and TIN DEM is deduced theoretically. In order to make clear how the terrain complexity factor ECF and the average elevation h affect the accuracy of DEM terrain representation RMSEEt, the formula of Gauss synthetical surface is applied to simulate several real terrain surfaces, each of which has different terrain complexity. Through the statistical analysis of linear regression in simula- tion data, the linear equation between accuracy of DEM terrain representation RMSEEt, terrain complexity factor ECF and the average elevation h is achieved. A new method is provided to estimate the accuracy of DEM terrain representation RMSEEt with a certain terrain complexity and it gives convincing theoretical evidence for DEM production and the corresponding error research in the future.