By the use of cross-correlation measures, the response of a symmetric Schmitt trigger (ST) driven by a random binary signal and white Gaussian noise is investigated. The results show that the information transmission...By the use of cross-correlation measures, the response of a symmetric Schmitt trigger (ST) driven by a random binary signal and white Gaussian noise is investigated. The results show that the information transmission can be enhanced when a certain amount of noise is presented, i.e., aperiodic stochastic resonance (ASR). Then, the influence of signal amplitude and the ST threshold on ASR is examined, the applicability of the ST in reducing the noise level of random signal transmission and improving the quality of output signal via ASR effect is illustrated. This research is of great interest in the field of digital communications.展开更多
Sound pressure amplitude will be attenuated with propagation distance in a certain rule when sound wave is propagated in shallow sea.When processing the attenuated signal,time-variant gain circuit is usually used to c...Sound pressure amplitude will be attenuated with propagation distance in a certain rule when sound wave is propagated in shallow sea.When processing the attenuated signal,time-variant gain circuit is usually used to compensate its diffusion loss.In this paper,spherical diffusion loss is compensated by digital potentiometer and operational circuit and further investigation is also made on compensation of cylindrical diffusion loss and transition from spherical diffusion loss to cylindrical diffusion loss.Finally,a new compensation model is proposed for unknown propagation loss for the purpose of adjusting the dynamic range of signal to meet the requirement of A/D conversion.展开更多
This paper introduces a frequency-hopped (FH) communication system to anti-intersymbol interferences (ISI) caused by the multipath propagation in shallow-water acoustic channels, and uses high-speed digital signal pro...This paper introduces a frequency-hopped (FH) communication system to anti-intersymbol interferences (ISI) caused by the multipath propagation in shallow-water acoustic channels, and uses high-speed digital signal processor (DSP) and serial ADC (MAX121) chip to demodulate received signal efficiently based Fast Fourier Transform (FFT) algorithm. The field experimental results show: a data rate of 1Kbit/s with the bit error rates on the order of 10 -4 is demonstrated at 2000 m in the shallow-water acoustic channel of Xiamen harbor, and the key techniques of the system is analyzed in the paper.展开更多
This paper presents a flexible and high speed digital scan converter (DSC) with the ability to handle high frequency ultrasound imaging in real-time. The characteristics in imaging system such as focus length of trans...This paper presents a flexible and high speed digital scan converter (DSC) with the ability to handle high frequency ultrasound imaging in real-time. The characteristics in imaging system such as focus length of transducer, the swing radius and sampling length etc. could be changed easily in compliance with the researcher's application based on this flexible digital scan converter. Linear interpolation is employed to achieve the coordinate transformations algorithm. Custom-built software is programmed to preliminarily handle the algorithm according to different ultrasound imaging applications. High performance FPGA will implement high speed interpolation calculation based on the preliminary data which are stored in the DDR2 SDRAM from the software. 64 bit 66 MHz PCI is employed to accomplish high speed data transmission. Experiment has shown that more than 500 frame rate could be achieved based on this high speed digital scan converter. The designed flexible and high speed digital scan converter could be used in current FPGA based high frequency ultrasound imaging system.展开更多
文摘By the use of cross-correlation measures, the response of a symmetric Schmitt trigger (ST) driven by a random binary signal and white Gaussian noise is investigated. The results show that the information transmission can be enhanced when a certain amount of noise is presented, i.e., aperiodic stochastic resonance (ASR). Then, the influence of signal amplitude and the ST threshold on ASR is examined, the applicability of the ST in reducing the noise level of random signal transmission and improving the quality of output signal via ASR effect is illustrated. This research is of great interest in the field of digital communications.
文摘Sound pressure amplitude will be attenuated with propagation distance in a certain rule when sound wave is propagated in shallow sea.When processing the attenuated signal,time-variant gain circuit is usually used to compensate its diffusion loss.In this paper,spherical diffusion loss is compensated by digital potentiometer and operational circuit and further investigation is also made on compensation of cylindrical diffusion loss and transition from spherical diffusion loss to cylindrical diffusion loss.Finally,a new compensation model is proposed for unknown propagation loss for the purpose of adjusting the dynamic range of signal to meet the requirement of A/D conversion.
文摘This paper introduces a frequency-hopped (FH) communication system to anti-intersymbol interferences (ISI) caused by the multipath propagation in shallow-water acoustic channels, and uses high-speed digital signal processor (DSP) and serial ADC (MAX121) chip to demodulate received signal efficiently based Fast Fourier Transform (FFT) algorithm. The field experimental results show: a data rate of 1Kbit/s with the bit error rates on the order of 10 -4 is demonstrated at 2000 m in the shallow-water acoustic channel of Xiamen harbor, and the key techniques of the system is analyzed in the paper.
文摘This paper presents a flexible and high speed digital scan converter (DSC) with the ability to handle high frequency ultrasound imaging in real-time. The characteristics in imaging system such as focus length of transducer, the swing radius and sampling length etc. could be changed easily in compliance with the researcher's application based on this flexible digital scan converter. Linear interpolation is employed to achieve the coordinate transformations algorithm. Custom-built software is programmed to preliminarily handle the algorithm according to different ultrasound imaging applications. High performance FPGA will implement high speed interpolation calculation based on the preliminary data which are stored in the DDR2 SDRAM from the software. 64 bit 66 MHz PCI is employed to accomplish high speed data transmission. Experiment has shown that more than 500 frame rate could be achieved based on this high speed digital scan converter. The designed flexible and high speed digital scan converter could be used in current FPGA based high frequency ultrasound imaging system.