设计了一种适用于Σ-ΔADC(模数转换器)的低功耗数字抽取滤波器。该数字抽取滤波器采用三级结构实现,分别是CIC滤波器、补偿滤波器和半带滤波器。在设计中,运用Noble恒等式原理、多相分解技术和CSD编码技术,初步降低了滤波器的功耗;根...设计了一种适用于Σ-ΔADC(模数转换器)的低功耗数字抽取滤波器。该数字抽取滤波器采用三级结构实现,分别是CIC滤波器、补偿滤波器和半带滤波器。在设计中,运用Noble恒等式原理、多相分解技术和CSD编码技术,初步降低了滤波器的功耗;根据补偿滤波器和半带滤波器长度的奇偶性和系数的对称性,提出一种奇偶优化法再次优化滤波器结构,进一步降低了整个滤波器的功耗,从而实现低功耗的目的。本设计基于110 nm CMOS工艺,在10MHz采样频率、5 k Hz正弦输入信号频率和256倍降采样率的情况下进行仿真。后仿真结果表明,滤波器的信噪失真比(SNDR)为91.5 d B,无杂散动态范围(SFDR)为97.0 d B,有效位数(ENOB)达到14.91 bit。在1.5 V电源电压下,数字电路(带SPI)的面积约为0.31 mm×0.81 mm,总功耗仅为376μW。展开更多
文摘设计了一种适用于Σ-ΔADC(模数转换器)的低功耗数字抽取滤波器。该数字抽取滤波器采用三级结构实现,分别是CIC滤波器、补偿滤波器和半带滤波器。在设计中,运用Noble恒等式原理、多相分解技术和CSD编码技术,初步降低了滤波器的功耗;根据补偿滤波器和半带滤波器长度的奇偶性和系数的对称性,提出一种奇偶优化法再次优化滤波器结构,进一步降低了整个滤波器的功耗,从而实现低功耗的目的。本设计基于110 nm CMOS工艺,在10MHz采样频率、5 k Hz正弦输入信号频率和256倍降采样率的情况下进行仿真。后仿真结果表明,滤波器的信噪失真比(SNDR)为91.5 d B,无杂散动态范围(SFDR)为97.0 d B,有效位数(ENOB)达到14.91 bit。在1.5 V电源电压下,数字电路(带SPI)的面积约为0.31 mm×0.81 mm,总功耗仅为376μW。