The single fault and multiple fault detections for multiple-valued logic circuits are studied in this paper. Firstly, it is shown that the cardinality of optimal single fault test set for fanout-free m-valued circuits...The single fault and multiple fault detections for multiple-valued logic circuits are studied in this paper. Firstly, it is shown that the cardinality of optimal single fault test set for fanout-free m-valued circuits with n primary inputs is not more than n + 1, for linear tree circuits is two, and for multiplication modulo circuits is two if n is an odd number or if n is an even number and m > 3, where the optimal test set of a circuit has minimal number of test vectors. Secondly,it is indicated that the cardinality of optimal multiple fault test set for linear tree circuits with n primary inputs is 1 + [n/(m - 1)], for multiplication modulo circuits is n+ 1, for fanout-free circuits that consist of 2-input linear tree circuits and 2-input multiplication modulo circuits is not greater than n+ 1, where [x] denotes the smallest integer greater than or equal to x. Finally,the single fault location approaches of linear tree circuits and multiplication modulo circuits are presented, and all faults in the two types of circuits can be located by using a test set with n + 1 vectors.展开更多
The circuit testable realization and its fault detection for logic functions with ESOP (EXOR-Sum-Of-Products) expressions are studied. First of all, for the testable realization by using XOR gate cascade, a test set...The circuit testable realization and its fault detection for logic functions with ESOP (EXOR-Sum-Of-Products) expressions are studied. First of all, for the testable realization by using XOR gate cascade, a test set with 2n + m + 1 vectors for the detections of AND bridging faults and a test set with 2n + m vectors for the detections of OR bridging faults are presented. Secondly, for the testable realization by using )(OR gate tree, a test set with 2n + m vectors for the detections of AND bridging faults and a test set with 3n + m + 1 vectors for the detections of OR bridging faults are presented. Finally, a single fault test set with n + 5 vectors for the XOR gate tree realization is presented. Where n is the number of input variables and m is the number of product terms in a logic function.展开更多
The IEEE Standard 1149.1 boundary scan (BS) implementation provides the internal access required for testing the digital printed circuit board (PCB). However, the integrity of the boundary scan test infrastructure sh...The IEEE Standard 1149.1 boundary scan (BS) implementation provides the internal access required for testing the digital printed circuit board (PCB). However, the integrity of the boundary scan test infrastructure should be tested first to guarantee the validation of the results of the rest functional test and diagnosis. This paper describes the fault models and test principles of the BS test access port (TAP) lines on PCBs. A test algorithm with high fault coverage and short time is then presented for the PCB on which all ICs are BS ones.展开更多
基金Supported by the National Natural Science Foundation of China (No.60006002) Education Department of Guangdong Province of China (No. Z02019)
文摘The single fault and multiple fault detections for multiple-valued logic circuits are studied in this paper. Firstly, it is shown that the cardinality of optimal single fault test set for fanout-free m-valued circuits with n primary inputs is not more than n + 1, for linear tree circuits is two, and for multiplication modulo circuits is two if n is an odd number or if n is an even number and m > 3, where the optimal test set of a circuit has minimal number of test vectors. Secondly,it is indicated that the cardinality of optimal multiple fault test set for linear tree circuits with n primary inputs is 1 + [n/(m - 1)], for multiplication modulo circuits is n+ 1, for fanout-free circuits that consist of 2-input linear tree circuits and 2-input multiplication modulo circuits is not greater than n+ 1, where [x] denotes the smallest integer greater than or equal to x. Finally,the single fault location approaches of linear tree circuits and multiplication modulo circuits are presented, and all faults in the two types of circuits can be located by using a test set with n + 1 vectors.
基金Supported by the National Natural Science Foundation of China (No.60006002)the Education Department of Guangdong Province of China (No.02019).
文摘The circuit testable realization and its fault detection for logic functions with ESOP (EXOR-Sum-Of-Products) expressions are studied. First of all, for the testable realization by using XOR gate cascade, a test set with 2n + m + 1 vectors for the detections of AND bridging faults and a test set with 2n + m vectors for the detections of OR bridging faults are presented. Secondly, for the testable realization by using )(OR gate tree, a test set with 2n + m vectors for the detections of AND bridging faults and a test set with 3n + m + 1 vectors for the detections of OR bridging faults are presented. Finally, a single fault test set with n + 5 vectors for the XOR gate tree realization is presented. Where n is the number of input variables and m is the number of product terms in a logic function.
文摘The IEEE Standard 1149.1 boundary scan (BS) implementation provides the internal access required for testing the digital printed circuit board (PCB). However, the integrity of the boundary scan test infrastructure should be tested first to guarantee the validation of the results of the rest functional test and diagnosis. This paper describes the fault models and test principles of the BS test access port (TAP) lines on PCBs. A test algorithm with high fault coverage and short time is then presented for the PCB on which all ICs are BS ones.