In recent years, sedimentation conditions in Dongting Lake have varied greatly because of signifi cant changes in runoff and sediment load in the Changjiang(Yangtze) River following the construction of Three Gorges Da...In recent years, sedimentation conditions in Dongting Lake have varied greatly because of signifi cant changes in runoff and sediment load in the Changjiang(Yangtze) River following the construction of Three Gorges Dam. The topography of the lake bottom has changed rapidly because of the intense exchange of water and sediment between the lake and the Changjiang River. However, time series information on lake-bottom topographic change is lacking. In this study, we introduced a method that combines remote sensing data and in situ water level data to extract a record of Dongting Lake bottom topography from 2003 to 2011. Multi-temporal lake land/water boundaries were extracted from MODIS images using the linear spectral mixture model method. The elevation of water/land boundary points were calculated using water level data and spatial interpolation techniques. Digital elevation models of Dongting Lake bottom topography in different periods were then constructed with the multiple heighted waterlines. The mean root-mean-square error of the linear spectral mixture model was 0.036, and the mean predicted error for elevation interpolation was-0.19 m. Compared with fi eld measurement data and sediment load data, the method has proven to be most applicable. The results show that the topography of the bottom of Dongting Lake has exhibited uneven erosion and deposition in terms of time and space over the last nine years. Moreover, lake-bottom topography has undergone a slight erosion trend within this period, with 58.2% and 41.8% of the lake-bottom area being eroded and deposited, respectively.展开更多
Single particles moving in a reflection-asymmetric potential are investigated by solving the Schr6dinger equation of the reflectionasymmetric Nilsson Hamiltonian with the imaginary time method in 3D lattice space and ...Single particles moving in a reflection-asymmetric potential are investigated by solving the Schr6dinger equation of the reflectionasymmetric Nilsson Hamiltonian with the imaginary time method in 3D lattice space and the harmonic oscillator basis expansion method. In the 3D lattice calculation, the l2 divergence problem is avoided by introducing a damping function, and the(l2)N term in the non-spherical case is calculated by introducing an equivalent N-independent operator. The efficiency of these numerical techniques is demonstrated by solving the spherical Nilsson Hamiltonian in 3D lattice space. The evolution of the single-particle levels in a reflection-asvmmetric ootential is obtained and discussed bv the above two numerical methods, and their consistencv is shown in the obtained single-particle energies with the differences smaller than 10-4[hω0]展开更多
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB417001)the National Natural Science Foundation of China(No.41271125)
文摘In recent years, sedimentation conditions in Dongting Lake have varied greatly because of signifi cant changes in runoff and sediment load in the Changjiang(Yangtze) River following the construction of Three Gorges Dam. The topography of the lake bottom has changed rapidly because of the intense exchange of water and sediment between the lake and the Changjiang River. However, time series information on lake-bottom topographic change is lacking. In this study, we introduced a method that combines remote sensing data and in situ water level data to extract a record of Dongting Lake bottom topography from 2003 to 2011. Multi-temporal lake land/water boundaries were extracted from MODIS images using the linear spectral mixture model method. The elevation of water/land boundary points were calculated using water level data and spatial interpolation techniques. Digital elevation models of Dongting Lake bottom topography in different periods were then constructed with the multiple heighted waterlines. The mean root-mean-square error of the linear spectral mixture model was 0.036, and the mean predicted error for elevation interpolation was-0.19 m. Compared with fi eld measurement data and sediment load data, the method has proven to be most applicable. The results show that the topography of the bottom of Dongting Lake has exhibited uneven erosion and deposition in terms of time and space over the last nine years. Moreover, lake-bottom topography has undergone a slight erosion trend within this period, with 58.2% and 41.8% of the lake-bottom area being eroded and deposited, respectively.
基金supported by the National Basic Research Program of China (Grant No. 2013CB834400)the National Natural Science Foundation of China (Grants Nos. 11335002, 11375015, 11461141002, and 11621131001)
文摘Single particles moving in a reflection-asymmetric potential are investigated by solving the Schr6dinger equation of the reflectionasymmetric Nilsson Hamiltonian with the imaginary time method in 3D lattice space and the harmonic oscillator basis expansion method. In the 3D lattice calculation, the l2 divergence problem is avoided by introducing a damping function, and the(l2)N term in the non-spherical case is calculated by introducing an equivalent N-independent operator. The efficiency of these numerical techniques is demonstrated by solving the spherical Nilsson Hamiltonian in 3D lattice space. The evolution of the single-particle levels in a reflection-asvmmetric ootential is obtained and discussed bv the above two numerical methods, and their consistencv is shown in the obtained single-particle energies with the differences smaller than 10-4[hω0]