基于跟踪法的磁编码器轴角转换单元具有抗干扰能力强,同时能得到角度和速度信号等优点;而专用集成电路具有并行性、灵活性和实时性高等优点。当采用专用集成电路(application specific integrated circuits,ASIC)设计全数字、纯硬件的...基于跟踪法的磁编码器轴角转换单元具有抗干扰能力强,同时能得到角度和速度信号等优点;而专用集成电路具有并行性、灵活性和实时性高等优点。当采用专用集成电路(application specific integrated circuits,ASIC)设计全数字、纯硬件的轴角数字转换单元时,面临着系统和算法的结构选择、内部参数界确定以及字长选取等问题。该文利用数字坐标旋转机(coordinate rotational digital computer,CORDIC)算法来替代传统跟踪测角中的乘法器和数控振荡器,通过对XY通道和Z通道进行标定以及误差分析,将其等效为一个减法操作符,实现角度求差功能。在此基础上,分析内部的误差传播路径,并从稳定性和动态性能角度确定传播路径的界,从而建立全数字轴角转换单元的模型,最后利用FPGA分别实现了A/D位数为10位、12位和14位时的轴角转换单元。实验结果验证了该文所建模型的正确性及有效性。展开更多
文摘基于跟踪法的磁编码器轴角转换单元具有抗干扰能力强,同时能得到角度和速度信号等优点;而专用集成电路具有并行性、灵活性和实时性高等优点。当采用专用集成电路(application specific integrated circuits,ASIC)设计全数字、纯硬件的轴角数字转换单元时,面临着系统和算法的结构选择、内部参数界确定以及字长选取等问题。该文利用数字坐标旋转机(coordinate rotational digital computer,CORDIC)算法来替代传统跟踪测角中的乘法器和数控振荡器,通过对XY通道和Z通道进行标定以及误差分析,将其等效为一个减法操作符,实现角度求差功能。在此基础上,分析内部的误差传播路径,并从稳定性和动态性能角度确定传播路径的界,从而建立全数字轴角转换单元的模型,最后利用FPGA分别实现了A/D位数为10位、12位和14位时的轴角转换单元。实验结果验证了该文所建模型的正确性及有效性。