Random fluctuations of turbulence bring random fluctuations of the refractive index, making the atmosphere a random fluctuation medium that destroys the coherence of light-waves. Research in atmospheric turbulence is ...Random fluctuations of turbulence bring random fluctuations of the refractive index, making the atmosphere a random fluctuation medium that destroys the coherence of light-waves. Research in atmospheric turbulence is actually the investigation of the atmospheric refractive index. The atmospheric structure constant of refractive index, C n 2 , is an important parameter denoting atmospheric turbulence. In this paper, C n 2 is measured during the day and at night and in all four seasons using a high sensitivity micro-thermal meter QHTP-2. The vertical profile of C n 2 in Hefei (0-30 km) is investigated by the analysis of experimental data. The average profile of C n 2 in Hefei exhibits conspicuous day and night differences with increased altitude. The distribution of log(C n 2 ) is nearly normal and has conspicuous seasonal differences.展开更多
This paper is concerned with a three-species competitive model with both white noises and Levy noises. We first carry out the almost complete parameters analysis for the model and establish the critical value between ...This paper is concerned with a three-species competitive model with both white noises and Levy noises. We first carry out the almost complete parameters analysis for the model and establish the critical value between persistence in the mean and extinction for each species. The sufficient criteria for stability in distribution of solutions are obtained. Finally, numerical simulations are carried out to verify the theoretical results.展开更多
基金supported by the National High Technology Research and Development Program of China (GrantNo. 2011AA8061007)
文摘Random fluctuations of turbulence bring random fluctuations of the refractive index, making the atmosphere a random fluctuation medium that destroys the coherence of light-waves. Research in atmospheric turbulence is actually the investigation of the atmospheric refractive index. The atmospheric structure constant of refractive index, C n 2 , is an important parameter denoting atmospheric turbulence. In this paper, C n 2 is measured during the day and at night and in all four seasons using a high sensitivity micro-thermal meter QHTP-2. The vertical profile of C n 2 in Hefei (0-30 km) is investigated by the analysis of experimental data. The average profile of C n 2 in Hefei exhibits conspicuous day and night differences with increased altitude. The distribution of log(C n 2 ) is nearly normal and has conspicuous seasonal differences.
基金The work is supported by National Science Foundation of China (No. 11472298), the Fundamental Research Funds for the Central Universities (No. ZXH2012K004), the National Science Foundation of Tianjin City (No. 13JCQNJC04400) and the NNSF of P. R. China (No. 11401574).
文摘This paper is concerned with a three-species competitive model with both white noises and Levy noises. We first carry out the almost complete parameters analysis for the model and establish the critical value between persistence in the mean and extinction for each species. The sufficient criteria for stability in distribution of solutions are obtained. Finally, numerical simulations are carried out to verify the theoretical results.